İçeriğe atla

Dayanım

Ortak basınç altında bir boşluğun etrafında dahili kuvvet çizgileri yoğunlaşır

Dayanım ya da mukavemet, cisimlerin çeşitli dış etkiler ve bu dış etkilerin neden olduğu iç kuvvetler karşısında gösterecekleri davranış biçimini inceleyen bilim dalıdır. Mekanik biliminin bir alt kolu olan mukavemet bilimi rijit olmayan (şekil değiştirebilen) cisimlerin mekaniği olarak da tanımlanabilir.[1] Rijit cisimler mekaniği, cisimlerin üzerlerine etkiyen dış tesirler ile şekillerini değiştirmediğini kabul ederken, rijit olmayan cisimler mekaniği şekil değiştirmeleri de göz önüne alır. Teori, yapının bir ya da iki boyutlu öğelerinin incelenip, sonra bunların gerilim düzeylerinin iki boyutlu ve üç boyutlu olarak varsayılıp üç boyuta genelleştirilmesi ve maddelerin elastik ve plastik davranışları hakkında daha tam bir teori geliştirilmesiyle başlamıştır. Maddelerin mekaniğinin önemli kurucu ve öncülerinden biri Stephen Timoshenko’dur.

Cisimlerin mukavemeti üzerine çalışma sıklıkla; kiriş, sütun, mil gibi yapısal öğelerdeki gerilim ve zorlamaları hesaplamak için çeşitli yöntemlerden yararlanır. Kullanılan modeller; uzunluk, genişlik, kalınlık makroskobik (geometrik) özellikleri yanında; akma dayanımı, maksimum mukavemet, Young Katsayısı, Poisson Oranı gibi özellikleri de dikkate alarak, bir yapının yüklenmeye verdiği tepkiyi ve bozulmaya karşı hassaslığını öngörmeye çalışır.

Mukavemet bilimi birçok mühendislik dalının temel konularındandır. Uygulamada; İnşaat, makine, maden, gemi inşaat, havacılık mühendisliği gibi alanlarda yaygın olarak kullanılır. Bir bina kolonunun, uçak kanadının, makine dişlisinin veya bir maden galerisinin maruz kalacakları tesirlere dayanabilecek şekilde tasarlanması mukavemet biliminin uygulamalarına örnek olarak verilebilir.

Kökeni

Mukavemet sözcüğü dilimize Arapçadan geçmiştir. Dayanma, karşı durma, karşı koyma, direnme, direniş, dayanırlık, direnç olarak Türkçeye çevrilebilir.[2] Bir bilim dalı olarak Türkiye'de önceleri ‘’Cisimlerin Mukavemeti’’ olarak adlandırılmış, sonraları ise sadece ‘’Mukavemet’’ olarak adlandırılması yaygın kabul görmüştür. Günümüzde mühendislik dallarında okutulan bu bilim dalı dersleri ‘’Mukavemet’' olarak adlandırılmaktadır.

Tanım

Madde biliminde, cismin mukavemeti, uygulanan yüke bozulmadan direnebilme yetisidir. Cisimlerin mukavemeti alanı, kuvvetlerle ve onların maddeler üzerinde yarattığı bozulmalarla ilgilenir. Bir mekanik öğeye yüklenen yük, kuvvetler birim temelinde ele alındığında, öğenin içinde gerilim kuvveti denen bir iç kuvvetin oluşmasına sebep olur. Cisimdeki gerilimler çeşitli şekillerde deformasyona sebep olur. Cisimdeki deformasyon, yine deformasyon birim temelinde ele alındığında, zorlanma olarak tanımlanır. Uygulanan yükler aksiyal (çekme ya da basma) ya da makaslama (shear) şeklinde olabilir. Bir mekanik öğenin yükleme kapasitesini bulmak için, o öğedeki gerilim ve zorlanmalar hesaplanmalıdır. Bu, öğenin geometrisinin, öğeye uygulanan yüklerin ve öğenin yapıldığı malzemenin özelliklerinin tam bilgisini gerektirir. Yükün ve öğenin geometrisinin tam bilgisiyle, öğenin herhangi bir noktasındaki gerilim düzeyi ve zorlanma düzeyi hesaplanabilir. Gerilim düzeyi ve zorlanma düzeyi bilindikten sonra, öğenin mukavemeti (yük taşıma kapasitesi), sertliği, deformasyonları, kararlılığı (orijinal halini koruma yetisi) hesaplanabilir. Hesaplanan gerilimler, öğenin akma dayanımı, maksimum mukavemet gibi mukavemet ölçüleriyle karşılaştırılabilir. Bunun sonucunda ortaya çıkan sapma, öğenin kullanım amacına bağlı sapma kriteriyle karşılaştırılabilir. Öğenin hesaplanan bükülme yüklemesi, uygulanan yükle karşılaştırılabilir. Öğenin hesaplanan sertliği ve kütle dağılımı, öğenin dinamik tepkisini hesaplamakta kullanılabilir ve bu, kullanılacak akustik çevreyle karşılaştırılabilir.

Cismin mukavemeti, gerilim – zorlanma eğrisi (akma dayanımı) üzerindeki, ötesine gidildiğinde, uygulanan yük kaldırılsa bile oluşan deformasyonların geri döndürülemediği ve kalıcı bükülmeye uğradığı noktayı ifade eder. Maksimum mukavemet, gerilim – zorlanma eğrisi (stress – strain curve) nde, gerilimin parçalanma yarattığı noktayı ifade eder.

Yüklenme Türleri

  • Enlemesine yükleme: Uygulanan kuvvetler, öğenin boylam eksenine dik açıdadır. Enlemesine yükleme öğenin eğilmesine ve orijinal konumundan sapmasına sebep olur
  • Eksenel yükleme: Uygulanan kuvvetler öğenin boylam ekseniyle yöndeştir. Kuvvetler öğenin uzamasına ya da kısalmasına neden olur.
  • Burgu yüklemesi: Paralel yüzeyler üzerine, ters yönlerde uygulanan eşdeğer kuvvetler sonucunda oluşan burkulmalardır.

Gerilim Terimleri

Tek eksenli gerilim şu şekilde ifade edilir:

burada F, bir A [m2] alanına etki eden kuvvet [N]'dir.  Alan, mühendislik geriliminin mi yoksa gerçek gerilimin mi ilgi çekici olduğuna bağlı olarak deforme olmamış alan veya deforme olmuş alan olabilir.[3]

Bir cismin a) basma, b) çekme ve c) makaslama altında yüklenmesi.
  • Basma gerilimi veya sıkıştırma, uygulanan yükün ekseni boyunca malzemenin uzunluğunu (sıkıştırma elemanı) azaltmak için hareket eden uygulanan bir yükün neden olduğu gerilme durumudur, başka bir deyişle, malzemenin sıkışmasına neden olan bir gerilme durumudur. Basit bir sıkıştırma durumu, zıt, itme kuvvetlerinin etkisiyle indüklenen tek eksenli sıkıştırmadır. Malzemeler için basınç dayanımı genellikle çekme dayanımlarından daha yüksektir. Bununla birlikte, sıkıştırmada yüklenen yapılar, üyenin geometrisine bağlı olarak burkulma gibi ek hata modlarına tabidir.
  • Çekme gerilimi, malzemeyi uygulanan yükün ekseni boyunca uzama eğiliminde olan uygulanan bir yükün neden olduğu gerilme durumudur, başka bir deyişle, malzemenin çekilmesinden kaynaklanan gerilmedir. Gerilime yüklenen eşit kesit alanına sahip yapıların mukavemeti, kesitin şeklinden bağımsızdır. Gerilime yüklenen malzemeler, malzeme kusurları veya geometrideki ani değişiklikler gibi gerilim konsantrasyonlarına karşı hassastır. Bununla birlikte, sünek davranış sergileyen malzemeler (örneğin çoğu metal) bazı kusurları tolere edebilirken, gevrek malzemeler (seramikler gibi) nihai akma mukavemetlerinin çok altında kopma gerçekleşir.
  • kayma gerilimi veya makaslama gerilimi, malzeme boyunca paralel etki çizgileri boyunca hareket eden bir çift karşıt kuvvetin birleşik enerjisinin, başka bir deyişle, malzemenin birbirine göre kayan yüzlerinin neden olduğu gerilimdir. Bir örnek, kağıdın makasla kesilmesi veya burulma yükünden kaynaklanan gerilmelerdir.

Mukavemet terimleri

  • Akma mukavemeti, cisimde kalıcı deformasyon yaratan en düşük gerilimdir. Alüminyum alaşımları gibi bazı maddelerde, akma noktası tanımlamak zordur, bu yüzden 0.2% plastik zorlanma meydan getiren kuvvet olarak tanımlanır.
  • Çekme mukavemeti cisimde bükülme ya da çatlak meydana getiren çekme geriliminin sınır değeridir. Çekme mukavemeti, gerçek mukavemet ya da görünen mukavemet şeklinde de isimlendirilir, ama görünen mukavemet daha yaygın kullanılır.
  • Basma mukavemeti, cisimde bükülme ya da çatlak meydana getiren sıkıştırıcı gerilimin sınır değeridir.
  • Yorulma mukavemeti: Cismin ya da bileşeninin periyodik yükleme altındaki mukavemetinin ölçüsüdür ve belirlemek genelde durağan mukavemete göre daha zordur. Gerilim aralığı olarak ifade edilir.
  • Kırılma tokluğu: Cismin aniden uygulanan yüke dayanabilme yetisinin enerji terimleriyle ifade edilen halidir. Izod ve Charpy darbe deneyleriyle malzemenin kırılma tokluğu değeri ölçülür.

Zorlanma (deformasyon) terimleri

Deformasyon cisimde kuvvetlerin yarattığı gerilim sonucu oluşan geometrik değişimlerdir. Deformasyon cismin yerdeğiştirme alanıyla ifade edilir. Zorlanma (ya da azaltılmış deformasyon): Cisim alanı doğrultusundaki deformasyon değişimini açıklayan matematiksel bir terimdir. Zorlanma, birim uzunluk başına deformasyondur. Çökme uygulanan yük sonucu yer değiştiren yapısal elementin değerini açıklayan bir terimdir.

Gerilim – birim şekil değişimi ilişkisi

Bir numunenin çekme gerilmesi altında temel statik tepkisi.
  • Elastikiyet, bir malzemenin stres serbest bırakıldıktan sonra önceki şekline geri dönme yeteneğidir. Birçok malzemede, uygulanan gerilim arasındaki ilişki, ortaya çıkan gerinimle (belirli bir sınıra kadar) doğru orantılıdır ve bu iki miktarı temsil eden bir grafik düz bir çizgidir.

Bu çizginin eğimi Young modülü veya "elastikiyet modülü" olarak bilinir. Elastikiyet modülü, gerilim-gerinim eğrisinin doğrusal-elastik kısmındaki gerilim-gerinim ilişkisini belirlemek için kullanılabilir. Doğrusal-elastik bölge ya akma noktasının altındadır ya da gerilme-gerinim grafiğinde bir akma noktası kolayca tanımlanamıyorsa,% 0 ila 0,2 gerinim arasında olacak şekilde tanımlanır ve hiçbir verim (kalıcı deformasyon) meydana gelmeyen gerinim bölgesi olarak tanımlanır.

  • Plastisite veya plastik deformasyon, elastik deformasyonun tam tersidir ve geri kazanılamayan kalıcı değişiklik bırakan gerinim olarak tanımlanır. Plastik deformasyon, uygulanan stresin serbest bırakılmasından sonra korunur. Doğrusal-elastik kategorideki çoğu malzeme genellikle plastik deformasyon yeteneğine sahiptir. Seramikler gibi gevrek malzemeler herhangi bir plastik deformasyon yaşamaz ve nispeten düşük gerinim altında kırılırken, metalik, kurşun veya polimerler gibi sünek malzemeler kırılma başlamadan önce plastik olarak çok daha fazla deforme olur.

Bir havuç ve çiğnenmiş kabarcık sakızı arasındaki farkı düşünün. Havuç kırılmadan önce çok az gerilir. Öte yandan, çiğnenmiş kabarcık sakızı, nihayet kırılmadan önce plastik olarak büyük ölçüde deforme olacaktır.

Mikroyapısal özellikler

Bir cismin mukavemeti mikroyapısına bağlıdır. Mühendislik işlemleri bu mikroyapıyı geliştirmeye yöneliktir. cismin mukavemetini arttıran güçlendirme mekanizması çeşitleri; işleme sertleşmesi (work hardening), çökeltme sertleştirmesi (precipitation hardening) ve tane sınırı güçlendirmesi (grain boundarry strengthing) dir ve nicel ve nitel olarak açıklanabilir. Güçlendirme mekanizmalarına, maddenin diğer başka özelliklerinin güçlendirme çabaları sonucunda dejenere olması tehlikesi eşlik eder.

Örneğin, tane sınırı güçlendirmesinde, akma dayanımı azalan tane boyutuyla maksimum düzeye çıkmasına rağmen çok düşük tane boyutu maddeyi kırılgan yapar. Genel olarak, akma dayanımı maddenin mekanik mukavemeti için yeterli bir ölçüttür. Akma mukavemetinin, plastik deformasyonu bulmayı sağlayan bir parametre olması dolayısıyla, maddenin mikroyapısına ve arzu edilen sonuçlara göre cismin mukavemetinin nasıl arttırılacağı konusunda bilgi sahibi olunabilir. Mukavemet, bozulmaya neden olan sıkıştırıcı gerilim, kopma gerilimi ve kayma gerilimlerinin sınır değerleri cinsinden ifade edilebilir. Dinamik yüklemenin etkileri, özellikle de yorulma problemi, muhtemelen maddelerin mukavemetinin en önemli pratik konusudur. Yineleyen yüklenme çoğunlukla, sonunda bozulmaya yol açan çatlaklara sebep olur. Çatlaklar her zaman gerilme yığılması sırasında başlar, özellikle deliklerin çevresinde ve köşelerde.

Ayrıca bakınız

Kaynakça

  1. ^ Mukavemet Teori ve Problemler, Prof. A. Zafer Öztürk - Prof. Sinan Çağdaş
  2. ^ "Türk Dil Kurumu İnternet Sitesi". 21 Ağustos 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: 6 Ekim 2020. 
  3. ^ "ÇEKME-BASMA" (PDF). DENEY FÖYÜ. Prof. Dr. Harun MİNDİVAN, Arş. Gör. Onur ERKAN, Prof. Dr. Harun MİNDİVAN. 19 Temmuz 2023 tarihinde kaynağından (PDF) arşivlendi. 

İlgili Araştırma Makaleleri

Sürünme, sabit sıcaklıkta, uzun süreli sabit çekme veya basma yükleri altında meydana gelen plastik deformasyondur. Sürünme, bir malzemenin akma gerilmesinin altında, gerilme etkisiyle sürekli ve yavaşça akması olayını tanımlayan bir mühendislik terimidir.

Gerilme gevşemesi deneyi, sabit bir sıcaklık ve sabit bir gerilme altında, malzemede oluşan gerilmenin zamana göre değişimini tespit eden bir deneydir. gerilme gevşemesi deneyi de Sürünme deneyine benzer olarak uzun zaman dilimlerinde gerçekleştirilebilen bir deneydir. Son zamanlarda gerilme gevşemesi deneyi giderek yaygınlık kazanmaktadır özellikle arabaların amortisör kısımlarında kullanılan çeliklerin geliştirilmesi konusunda mutlak gereklilik duyulmaktadır çünkü bu malzemelerden istenen temel özellik herhangi bir gerilim anında oluşan enerjiyi absorbe ederek daha sonra serbest bırakması istenir. Gerilme gevşemesi deneyi ile malzemenin yoğun olduğu bölgelerdeki bu bölgeler döküm, plastik şekil verme ve kaynaktır. Isıl işlemin kalıcı iç gerilmelere ve bunların giderilmesine olan etkisini test eden bir deneydir.
Gerilme gevşemesi ile malzemelerin mekanik özellikleri arasında bir ilişki olup bu ilişkiden faydalanarak aktivasyon enerjisi, deformasyon hızı duyarlılığı üssü, dislokasyon hareketi için gerekli etkin gerilme, dislokasyon hızı gerilme üssü gibi mekanik özelliklerle ilgili bazı parametreler de gerilme gevşemesi deneyi ile tespit edilir.

Rijit cisim, mekanikte iç ve dış etkiler altında deformasyona uğramayan ve şekil değiştirmeyen maddedir. Bu etki dışarıdan etki eden bir kuvvet veya moment olabileceği gibi, cismin içinde oluşan kesit-tesir etkileri de olabilir. Gerçekte, her cisim bir miktarda deforme olacağından dolayı ideal bir kabul olabileceği gibi, bu deformasyonun çok minimal olmasından dolayı göz ardı edilebileceği durumlar da kabul edilebilir.

Elastisite modülü, malzemenin kuvvet altında elastik şekil değiştirmesinin ölçüsüdür. Tanımı gereği; birim kesit alanına sahip bir malzemede, birim boyu bir kat artırmak için uygulanması gereken birim kuvveti gösterir. Kimi kaynaklarda Young modülü olarak da geçer. Bulk modülü, Shear (Kesme) modülü gibi malzemelerin mekanik özelliklerinden bir tanesidir.

<span class="mw-page-title-main">Akışkan</span>

Akışkan, sıvıları, gazları, plazmaları ve bazı durumlarda plastik katıları (eriyik) kapsayan, maddenin hallerinin bir altkümesidir.

Termoset, ısıtıldığında sertleşen ve bu halini sonsuza dek koruyan plastiktir. Termoset, polimerlerin ısıl davranışlarına göre ayrıldığı iki temel gruptan biridir, diğeri de termoplastiktir. Zincir molekülleri arasında bulundurdukları çapraz bağlar aracılığıyla üç boyutlu bir yapı oluşturarak, mekanik etki ve yüklemelere daha duyjitleşirler. Rijitleşmeleri, elastik modülü ve dayanımlarının diğer polimer çeşitlerine göre daha yüksek olmasını sağlar. Termoplastiklerde olduğu gibi yüksek sıcaklıklarda ikincil bağların zayıflaması veya kopması sonucu zincirlerin kayma-dönme hareketlerinden ötürü oluşan elastik-plastik deformasyonlar, termosetlerde görülmez. Çünkü Van der Waals bağlarının yerine çapraz bağların getirmiş olduğu rijitlik sebebiyle, geleneksel termosetlerin plastik şekil değiştirme kabiliyetleri diğer polimerlere göre yok denecek kadar azdır, yani gevrektirler. Gevrek olmaları, bir anlamda kırılma tokluklarının da göreceli olarak düşük olmasının bir sebebidir. Yüksek sıcaklıklarda mekanik özelliklerini korurlar, ısıl stabiliteleri yüksektir. Buna rağmen erimezler, viskoz davranış göstermezler. Eğer çapraz bağların deforme olabilmesine imkân verebilecek şekilde bir ısı artışı olursa, direkt olarak yanmaya başlarlar. Bu özellikleri sebebiyle geri dönüşümleri mümkün değildir. Çekme eğrilerine bakıldığında homojen elastik deformasyon sonucu akma sınırını hemen geçtiklerinde koptukları, kırıldıkları görülür. Bu da plastik deformasyon kabiliyetlerinin ne kadar düşük olduğuna işaret eden bir kanıttır. Termoset polimerler, yalnızca polimerleşme ve olgunlaşma sırasında şekillendirilebilir. Termoset malzemeler polimerizasyon ve olgunlaşma süreçlerini tamamladıktan sonra çapraz bağlı güçlü bir yapı oluştururlar, ısıya ve korozyona dayanımları termoplastik malzemelere göre daha yüksektir. Termoset plastiklere örnek olarak reçineler poliüretan, poliimid, polibütadien ve vulkanize kauçukları verebiliriz, termoplastik ürünlere örnek olarak ise polietilen, polipropilen ve polistireni verebilir. Cam güçlendirici plastikler olarak kullanılan doymamış polyester reçineler de termosetlere bir örnektir. Elastomerlerin çoğu termoset plastiklerdir ancak termoplastik elastomerler de vardır.

<span class="mw-page-title-main">Young modülü</span>

Young katsayısı, katı fiziğinde bir katının sertliğini ölçmede kullanılan bir birimdir. Aynı zamanda elastikiyet katsayısı, gerilme katsayısı olarak da bilinir. Farklı zorlanmalara bağlı olarak değişen farklı gerilmelerin oranı olarak tanımlanır. Bu maddenin bir örneği üzerinde yapılan gerilme testleri sonucunda çıkarılan gerilme-zorlanma grafiğine baz alınarak karar verilen bir olgudur.

Hugoniot elastik sınırı tek eksenli şekil değiştirme durumu için malzemenin akma sınırı olarak tanımlanabilir ve malzemenin standart çekme testi sonucunda bulunan akma gerilmesi ile aynı değildir. Malzemenin tek eksenli gerilme durumu için verilen akma gerilmesine benzer bir ifadedir denebilir.

<span class="mw-page-title-main">Elastomer</span>

Elastomer, yapısında viskozite ve elastisite barındıran polimerdir.

<span class="mw-page-title-main">Gerilme-şekil değiştirme eğrisi</span>

Bir malzemenin gerilme ve şekil değiştirme arasındaki ilişkisi o malzemenin gerilme-deformasyon eğrisi olarak bilinir. Malzemeye özgüdür ve farklı zaman aralıklarında uygulanan çekme veya basma gerilmelerinin yarattığı deformasyon miktarı kaydedilerek bulunur. Bu eğriden elastisite modülü (E) gibi malzemeye ait birçok özellik ortaya çıkarılabilir

Gerilme, fizikte, ip, kablo, zincir veya demir çubuk, kafes kiriş gibi üç boyutlu cisimlere her iki uçtan uygulanan çekme kuvveti olarak tanımlanmaktadır. Atomik seviyede, atom veya moleküller birbirinden ayrılıp elektromanyetik potansiyel enerji kazandığında, gerilme oluşur. Gerilmiş olan çubuk veya ip eski konumlarına gelebilmek için uçlarına bağlanıp germe uygulayan objeleri ters bir kuvvetle çekecektir. Sıkıştırmanın tersi gerilmedir. Fizikte, gerilme bir kuvvet olmamasına rağmen, Newton veya pound-kuvvet birimleriyle tanımlanmaktadır. İp veya tel gibi objeler, uçlarına bağlanıp gerilmelerini sağlayan objelere tersi yönde kuvvet uygularlar. Gerginlikten dolayı oluşan bu kuvvetlere germe kuvveti denilmektedir. İp veya tellerin bağlı olduğu objelerde; ivmenin sıfır olduğu dengede olan veya ivmelenmenin ve kuvvetin olduğu iki olası sistem vardır.

<span class="mw-page-title-main">Sürekli ortamlar mekaniği</span>

Sürekli ortamlar mekaniği, ayrı parçacıklar yerine tam bir kütle olarak modellenen maddelerin mekanik davranışları ve kinematiğin analizi ile ilgilenen mekaniğin bir dalıdır. Fransız matematikçi Augustin-Louis Cauchy, 19. yüzyılda bu modelleri formüle dökmüştür, fakat bu alandaki araştırmalar günümüzde devam etmektedir. 

Yapıştırıcı yapışkanlık veya kohezyon ile mekanik, kimyasal, yapışkan bir bütün oluşturmak üzere diğer malzemeleri tutan veya çeken herhangi bir malzeme veya maddedir.

<span class="mw-page-title-main">Gevreklik</span>

Bir malzeme stres altında ufak elastik deformasyon ve önemsiz miktarda plastik deformasyon geçirerek kırılırsa malzemenin gevrek olduğu söylenir. Gevrek malzemeler yüksek mukavemetli olsalar bile kırılmadan önce görece düşük miktarda enerji sönümler. Kırılma sırasında genellikle bir çatlama sesi de çıkar. Çoğu seramik ve cam, PMMA ve polistiren gibi bazı polimerler gevrek malzemelerdir. Pek çok çelik yapısına ve üretim yöntemine bağlı olarak düşük sıcaklıklarda gevreklik gösterir.

<span class="mw-page-title-main">Boyun verme (Mühendislik)</span>

Boyun verme, Mühendislik veya malzeme biliminde, nispeten büyük miktarlarda gerinmenin, malzemenin küçük bir bölgesinde orantısız bir şekilde lokalize olduğu bir çekme deformasyonu türüdür. Yerel kesit alanında ortaya çıkan belirgin azalma, "boyun" adının temelini oluşturmaktadır.

<span class="mw-page-title-main">Süneklik</span> mühendislik

Süneklik, genellikle bir malzemenin çekme yatkınlığı olarak tanımlanan mekanik bir özelliktir. Malzeme biliminde süneklik, bir malzemenin kopmadan önce çekme gerilimi altında plastik deformasyonu sürdürebilme derecesi ile tanımlanmaktadır. Süneklik, bir malzemenin belirli üretim işlemlerine uygunluğunu ve mekanik aşırı yükü emme kapasitesini tanımlayan mühendislik ve imalatta önemli bir husustur. Genellikle sünek olarak tanımlanan malzemeler arasında altın ve bakır bulunmaktadır. Benzer bir mekanik özellik olan dövülebilirlik, bir malzemenin basınç stresi altında bozulmadan plastik olarak deforme olma yeteneği ile karakterize edilmektedir. Tarihsel olarak, çekiçleme veya haddeleme yoluyla şekillendirmeye uygun olan malzemeler dövülebilir olarak kabul edilmiştir. Kurşun, nispeten dövülebilir ancak sünek olmayan bir malzeme örneğidir.

Polimerlerin kristalizasyonu, moleküler zincirlerinin kısmi hizalanmasıyla ilişkili bir işlemdir. Bu zincirler birlikte katlanır ve sferülit adı verilen daha büyük küresel yapılar oluşturan lamel adı verilen düzenli bölgeler oluşturmaktadır. Polimerler, erime, mekanik gerdirme veya çözücü buharlaşmasından soğutma üzerine kristalleşebilmektedir. Kristalleşme, polimerin optik, mekanik, termal ve kimyasal özelliklerini etkilemektedir. Kristallik derecesi farklı analitik yöntemlerle tahmin edilmektedir ve genellikle "yarı kristal" olarak adlandırılan kristalize polimerlerle tipik olarak %10 ile %80 arasında değişmektedir. Yarı kristalli polimerlerin özellikleri, sadece kristallik derecesi ile değil, aynı zamanda moleküler zincirlerin boyutu ve yönü ile de belirlenmektedir.

<span class="mw-page-title-main">Deformasyon mekanizması</span>

Deformasyon mekanizması, geoteknik mühendisliğinde, bir malzemenin iç yapısındaki, şeklindeki ve hacmindeki değişikliklerden sorumlu olan mikroskobik ölçekte meydana gelen bir süreçtir. Süreç düzlemsel süreksizliği ve/veya atomların kristal kafes yapısı içindeki orijinal konumlarından yer değiştirmesini içermektedir. Bu küçük değişiklikler, kayalar, metaller ve plastikler gibi malzemelerin çeşitli mikro yapılarında korunmaktadır ve optik veya dijital mikroskop kullanılarak derinlemesine incelenebilmektedir.

<span class="mw-page-title-main">Kırılma Mekaniği</span> Malzemelerin yüzeyi ve iç yüzeyindeki çatlakların davranışlarını inceleyen mühendislik dalı.

Kırılma mekaniği, malzemelerdeki çatlakların yayılmasının incelenmesiyle ilgili mekanik alanıdır. Bir çatlak üzerindeki itici kuvveti hesaplamak için analitik katı mekaniği yöntemlerini ve malzemenin kırılmaya karşı direncini karakterize etmek için deneysel katı mekaniği yöntemlerini kullanır.

Katı mekaniği ; katı malzemelerin davranışını, özellikle kuvvetlerin etkisi altındaki hareketlerini ve deformasyonlarını, sıcaklık değişimlerini, faz değişimlerini ve diğer harici veya dahili ajanları inceleyen süreklilik mekaniğinin bir dalıdır.