İçeriğe atla

Data (Öklid)

Kitabın ilk sayfası.

Data (GrekçeΔεδομένα, LatinceDedomena), Öklid'in bir eseridir. Geometrik problemlerde "verilen" bilginin doğası ve sonuçları ile ilgilenir. Konu, Öklid'in Elemanları'nın ilk dört kitabıyla yakından ilgilidir.

Data, Öklid tarafından İskenderiye okullarında kullanılmak üzere yazılmış bir çalışmadır ve Elementlerin ilk altı kitabına eşlik eden bir cilt olarak kullanılması amaçlanmıştır. Kitap yaklaşık on beş tanım ve doksan beş cümle içeriyor, bunlardan cebirsel kurallar veya formül olarak hizmet eden yaklaşık iki düzine ifade vardır.[1] Bu ifadelerden bazıları, ikinci dereceden denklemlerin çözümlerinin geometrik eşdeğerleridir.[1] Örneğin, Data, dx2 - adx + b2c = 0 ve bilinen Babil denklemi xy = a2, x ± y = b denklemlerinin çözümlerini içerir.[1]

Basımlar ve çeviriler

Yunanca metin
İngilizce versiyonlar
Fransızca versiyonlar
Almanca versiyonlar
  • Euklid's Data, Julius Fredrich Wurm, 1825, 1825 versiyonu
  • Euclids Porismen und Data, Fredrich Buchbinder, 1866
  • Die Data von Euklid, Clemens Thaer, 1962
Latince versiyonlar

Notlar

  1. ^ a b c Boyer 1991, "Euclid of Alexandria" s. 103 "Öklid'in Data 'sı, hem Yunanca hem de Arapça aracılığıyla bize gelen bir çalışmadır. İskenderiye okullarında kullanılmak üzere yazılmış gibi görünüyor ve aynı şekilde Elementlerin ilk altı kitabına eşlik eden bir cilt olarak hizmet ediyor. Bir tablolar el kitabının bir ders kitabını tamamlaması gibi. [...] Metnin gövdesi, büyüklükler ve konumlarla ilgili on beş tanımla açılır, bir problemde verilebilecek koşulların ve büyüklüklerin sonuçlarına ilişkin doksan beş ifadeden oluşur. [...] Cebirsel kurallar veya formül görevi gören yaklaşık iki düzine benzer ifade vardır. [...] Bazı ifadeler ikinci dereceden denklemlerin çözümünün geometrik eşdeğerleridir. Örneğin [...] y'yi ortadan kaldırarak (a - x)dx = b2c veya dx2 - adx + b2c = 0 elde ederiz, buradan x = a/2 ± (a/2)2 - b2(c/d) bulunur. Öklid tarafından verilen geometrik çözüm, kök işaretinden önceki eksi işaretinin kullanılması dışında buna eşdeğerdir. Data 'daki 84 ve 85 numaralı ifadeler, yine eşzamanlı denklemlerin çözümlerinin eşdeğerleri olan xy = a2, x ± y = b sistemlerinin tanıdık Babil cebirsel çözümlerinin geometrik değiştirmeleridir."

Konuyla ilgili yayınlar

  • Netz, R. (2004), "EUCLID'S DATA", The Classical Review, 54 (2), ss. 337-338, doi:10.1093/cr/54.2.337 
  • Nathan Sidoli & Yoichi Isahaya (2018), Thābit ibn Qurra’s Restoration of Euclid’s Data, Springer International Publishing, doi:10.1007/978-3-319-94661-0, ISBN 978-3-319-94661-0 
  • Harari, O. (2005), "ΔEΔOMENA: Euclid's Data or the Importance of Being Given by Christian Marinus Taisbak", International Journal of the Classical Tradition, 11 (4), ss. 651-654, JSTOR 30222025 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matematik</span> nicelik, yapı, uzay ve değişim gibi konularla ilgilenen bilim dalı

Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.

<span class="mw-page-title-main">Pisagor teoremi</span> Öklid geometrisinde bir dik üçgenin üç kenarı arasındaki bağıntı

Pisagor teoremi veya Pisagor bağıntısı, Öklid geometrisinde üçgenin kenarları arasındaki temel ilişkiyi kuran ilk teoremlerden biridir. Teoreme gerçek hayattan örnek olarak telli çalgıları gösterilebilir; 'telin uzunluğu arttıkça titreşim artar' prensibine dayanır. Pisagor'un denklemi olarak da isimlendirilen bu teorem, a, b ve c kenarlarının arasındaki ilişkiyi şu şekilde açıklar:

<span class="mw-page-title-main">Öklid geometrisi</span> Öklide atfedilen matematiksel-geometrik sistem

Öklid geometrisi, İskenderiyeli Yunan matematikçi Öklid’e atfedilen matematiksel bir sistemdir ve onun Elemanlar adlı geometri üzerine ders kitabında tarif edilmektedir. Öklid'in yöntemi, sezgisel olarak çekici küçük bir aksiyom seti varsaymaktan ve bu aksiyomlara dayanarak birçok başka önermeyi (teoremleri) çıkarmaktan ibarettir. Öklid'in sonuçlarının çoğu daha önceki matematikçiler tarafından ifade edilmiş olsa da, Öklid, bu önermelerin kapsamlı bir tümdengelimli ve mantıksal sisteme nasıl uyabileceğini gösteren ilk kişi oldu. Elemanlar, ilk aksiyomatik sistem ve resmi ispatın ilk örnekleri olarak ortaokulda (lise) hala öğretilen düzlem geometrisi ile başlar. Üç boyutlu katı geometrisi ile devam ediyor. Elemanlar’ın çoğu, geometrik dilde açıklanan, şimdi cebir ve sayı teorisi olarak adlandırılan şeyin sonuçlarını belirtir.

Cebir sayılar teorisini, geometriyi ve analizi içine alan geniş bir matematik dalıdır. Temel matematik işlemlerinden, çember ve daire alanları bulmayı kapsayan geniş bir ilgi alanına sahiptir. Cebir, mühendislik ve eczacılık gibi birçok alanda kullanılmaktadır. Kuramsal cebir, ileri matematiğin bir dalı olmakla birlikte sadece uzmanlar tarafından çalışılan bir koldur.

<span class="mw-page-title-main">Öklid</span> Yunan matematikçi, aksiyomatik geometrinin mucidi

Öklid (Grekçe: Εὐκλείδης Eukleídēs; MÖ 330 - 275 yılları arasında yaşamış, İskenderiyeli bir matematikçidir. Megaralı Öklid'den ayırmak için bazen İskenderiyeli Öklid olarak anılır, genellikle "geometrinin kurucusu" veya "geometrinin babası" olarak anılan bir Yunan matematikçiydi. Ptolemy I döneminde İskenderiye'de aktifti. Elemanlar, yayınlandığı zamandan 19. yüzyılın sonlarına veya 20. yüzyılın başlarına kadar matematik öğretimi için ana ders kitabı olarak hizmet veren, matematik tarihindeki en etkili çalışmalardan biridir. Elemanlar’da, Öklid, küçük bir aksiyom setinden, şimdi Öklid geometrisi olarak adlandırılan şeyin teoremlerini çıkardı. Öklid ayrıca perspektif, konik kesitler, küresel geometri, sayı teorisi ve matematiksel kesinlik üzerine eserler yazdı.

<span class="mw-page-title-main">Apollonios (Pergeli matematikçi)</span> Konik kesitler üzerine yazılarıyla tanınan antik Yunan coğrafyacı ve astronom

Pergeli Apollonius, konik kesitler üzerindeki çalışmaları ile tanınan Antik Yunan geometri uzmanı ve astronom. Öklid ve Arşimet'in konuya katkılarından başlayarak, onları analitik geometrinin icadından önceki duruma getirdi. Elips, parabol ve hiperbol terimlerinin tanımları bugün kullanımda olanlardır.

<span class="mw-page-title-main">Konikler</span> bir huniyi ve düzlemi kesiştirince oluşan eğri

Konik kesit, eliptik veya dairesel bir çift taraflı koninin, düzlemle kesitinden meydana gelen eğriler. Bunlar, çember, elips, parabol ve hiperboldür.

<span class="mw-page-title-main">François Viète</span> Fransız matematikçi (1540 – 1603)

François Viete Fransız matematikçi. Adıyla anılan Vieta formüllerini keşfetmiştir.

<span class="mw-page-title-main">Geometrik medyan</span>

Geometrik medyan bir Öklid uzayında bulunan aralıklı set halindeki örneklem noktaları, bu noktalar arasındaki uzaklıkların toplamını en küçük (minimum) yapan bir nokta olarak tanımlanır. Tek boyutlu veri serisi içinde veri noktaları arasında uzaklıkları minimum yapma özelligi olan medyanın, çok boyutlu veri uzayında karşıtı olup, bir çokdeğişirli merkezsel konum ölçüsü olur. Geometrik medyan için kullanılan diğer adlar Fermat-Weber noktası veya 1-medyan olur.

<span class="mw-page-title-main">İskenderiyeli Pappus</span> MS. 3-4. yüzyıl Yunan matematikçi

İskenderiyeli Pappus (Grekçe: Πάππος ὁ Ἀλεξανδρεύς; yaklaşık MS. 290 - 350) antik çağın son büyük Yunan matematikçilerinden biridir. İskenderiye doğumlu Helenleşmiş bir Mısırlıydı. Synagoge (Συναγωγή) ya da Koleksiyon olarak da adlandırılan eseri ve Pappus teoremi ile bilinir.

<i>Öklidin Elementleri</i> Öklidin matematik hakkındaki bir incelemesi

Öklid'in Elementleri İskenderiye'li Antik Yunan Öklid'e atfedilmiş 13 geometri kitabı bütünüdür. Öklid'in Elementler'i, tanımlar, aksiyomlar, önermeler ve bu önermelerin ispatlarından oluşur. Konuları iki ve üç boyutlu şekillerde öklidyen geometri, sayı teorisini, perspektif, konik kesitler, küresel geometri ve kuadrik yüzeyleri içerir. En eski geniş çaplı matematiksel tez olan Elementler hala ders kitabı olarak kullanılmaktadır. Kitapta kullanılan aksiyomatik yöntem birçok filozof ve matematikçiyi etkilemiştir.

Neapolisli Marinus, MS 440 Flavia Neapolis, Filistin doğumlu Neoplatonist bir filozof, matematikçi ve retorik.

Menaechmus, Alopeconnesus'ta ya da Trakya Chersonese'deki Prokonnesos'ta doğmuş, Platon'la olan arkadaşlığı ile tanınan, konik kesitlerini açık keşfiyle ve parabol ile hiperbol kullanarak küpü iki katına çıkarma problemine getirdiği çözümle tanınan eski bir Yunan matematikçi, geometri uzmanı ve filozof.

<span class="mw-page-title-main">Orta Çağ İslam matematiği</span> yaklaşık 622 ile 1600 yılları arasında İslam medeniyeti altında korunan ve geliştirilen matematiğin bütünü

İslam'ın Altın Çağı'nda matematik, özellikle 9. ve 10. yüzyıllarda, Yunan matematiği ve Hint matematiği üzerine inşa edilmiştir. Ondalık basamak-değer sisteminin ondalık kesirleri içerecek şekilde tam olarak geliştirilmesi, ilk sistematik cebir çalışması (Hârizmî tarafından yazılan Cebir ve Denklem Hesabı Üzerine Özet Kitap adlı eser ve geometri ve trigonometride önemli ilerlemeler kaydedilmiştir.

Bu, "Antik Yunan matematikçilerinin zaman çizelgesi"dir..

<span class="mw-page-title-main">Matematik tarihi</span> matematik biliminin tarihi

Matematik tarihi, öncelikle matematikteki keşiflerin kökenini araştıran ve daha az ölçüde ise matematiksel yöntemleri ve geçmişin notasyonunu araştıran bir bilimsel çalışma alanıdır. Modern çağdan ve dünya çapında bilginin yayılmasından önce, yeni matematiksel gelişmelerin yazılı örnekleri yalnızca birkaç yerde gün ışığına çıktı. MÖ 3000'den itibaren Mezopotamya eyaletleri Sümer, Akad, Asur, Eski Mısır ve Ebla ile birlikte vergilendirmede, ticarette, doğayı anlamada, astronomide ve zamanı kaydetmede/takvimleri formüle etmede aritmetik, cebir ve geometri kullanmaya başladı.

<span class="mw-page-title-main">Gnomon teoremi</span> Bir gnomonda meydana gelen belirli paralelkenarlar eşit büyüklükte alanlara sahiptir.

Gnomon teoremi, bir gnomon'da meydana gelen belirli paralelkenarların eşit büyüklükte alanlara sahip olduğunu belirtir. Gnomon, geometride benzer bir paralelkenarı daha büyük bir paralelkenarın bir köşesinden çıkararak oluşturulan bir düzlem şeklidir; veya daha genel olarak, belirli bir şekle eklendiğinde, aynı şekle sahip daha büyük bir şekil oluşturan bir şekildir.

<span class="mw-page-title-main">Geometri tarihi</span> Geometrinin tarihsel gelişimi

Geometri, mekansal ilişkilerle ilgilenen bilgi alanı olarak ortaya çıkmıştır. Geometri, modern öncesi matematiğin iki alanından biriydi, diğeri ise sayıların incelenmesi yani aritmetikti.

<span class="mw-page-title-main">Geometrik ortalama teoremi</span> Dik üçgenler hakkında bir teorem

Dik üçgen yükseklik teoremi veya geometrik ortalama teoremi, bir dik üçgendeki hipotenüs üzerindeki yükseklik uzunluğu ile hipotenüs üzerinde oluşturduğu iki doğru parçası arasındaki ilişkiyi tanımlayan temel geometrinin bir sonucudur. İki doğru parçasının geometrik ortalamasının yüksekliğe eşit olduğunu belirtir.

<span class="mw-page-title-main">Campanus Nouariensis</span>

Campanus Nouariensis, Euclid's Elements üzerine yaptığı çalışmalarla tanınan bir İtalyan matematikçi, astronom, astrolog ve doktordur. Dönemin belgeleri ondan Magister Campanus olarak bahseder ve adının tam tarzı Magister Campanus Nouariensis'tir. Ayrıca Campano da Novara, Giovanni Campano veya benzeri olarak da anılır. Daha sonraki yazarlar bazen Johannes Campanus veya Iohannes Campanus ön adlarını kullandılar.