İçeriğe atla

Darcy-Weisbach eşitliği

Akışkanlar dinamiğinde Darcy-Weisbach eşitliği, uzun bir boruda akan bir sıvının sürtünme kaynaklı yük ve basınç kaybıyla alakalı olaybilimsel bir eşitliktir. Eşitlik ismini Henry Darcy ve Julius Weisbach'tan almaktadır. Darcy-Weisbach eşitliği Darcy sürtünme faktörü olarak da bilinen boyutsuz sürtünme faktörünü içerir. Ayrıca Darcy-Weisbach sürtünme faktörü ve Moody sürtünme faktörü olarak da bilinir. Darcy sürtünme faktörü 4 katı olduğu Fanning sürtünme faktörü ile karıştırılmamalıdır.[1]

Yük Kaybı Kalıbı

Yük kaybı ;

formülü ile hesaplanabilir.

  • hf sütünmeden kaynaklı yük kaybı (SI birim: m);
  • L borunun uzunluğu(m);
  • D borunun hidrolik çapı (borunun dairesel kesiti için iç çapa eşittir) (m);
  • V ortalama akış hızı (hacimsel akış ile birim zamanda ıslanan alan oranı) (m/s);
  • g yerçekimi ivmesi (m/s²);
  • fD boyutsuz Darcy sürtünme faktörü.

Basınç Kaybı Kalıbı

Akışkanın bir kolon yüksekliği, yük kaybı da kullanılarak basınç kaybı Δp olarak açıklanabilir.

ρ: akışkanın yoğunluğu. Darcy-Weisbach eşitliği aynı zamanda basınç kaybı için de yazılabilir:[2]

Sürtünmeden kaynaklı basınç kaybı Δp (Pa) :

  • boru uzunluğunun botu çaıpına oranına, L/D;
  • sıvının yoğuluğuna, ρ (kg/m³);
  • ortalama akış hızına, V (m/s),
  • Darcy sürtünme faktörüne fD bağlı bir fonksiyondur.

Basınç kaybı eşitliği, yük kaybı eşitliğinin iki tarafınıda ρ ve g ile çarparak türetilebilir.

Darcy sürtünme faktörü

Ayrıca bakınız Darcy sürtünme faktörü formülü

Sürtünme faktörü fD ve akış katsayısı λ sabit değildir ve borunun değişkenlerine ve akış hızına bağlı olarak değişim gösterir ancak belirgin akış bölgelerinde yüksek kesinliği bilinmektedir. Çeşitli deneysel veya teorik ilişkilendirmeler kullanılarak hesaplanabilirken, yayınlanmış çizelgelerden de edinilebilir. Bu çizelgeler Moody Şemaları olarak da bilinir ve faktörün kendisi de Moody sürtünme faktörü olarak adlandırılır. Yayınladığı yaklaşık formül sonrasında Blasius sürtünme faktörü olarak da adlandırılmıştır.

Yavaş akışlar için Poiseville Yasası'nın bir sonucudur. λ = 64/Re,, Re:Borunun hidrolik çapının özgün uzunluğunun ikame edilmesiyle hesaplanan Reynold sayısı.

Hızlı akışlarda sürtünme faktörünü bulmak için Moody Şeması kullanılır ya da Celebrook-White eşitliği veya Swamee-Juin eşitliği gibi eşitlikler çözülür. Şema ve Celebrook-White eşitliği tekrarlanan metotlarken Swamee-Juin eşitliği tamamen dolu bir akış için sürtünme faktörüne direkt ulaşmayı sağlar.

Fanning sürtünme faktörü ile yaşanan karışıklık

Darcy-Weisbach sürtünme faktörünün fD, Fanning sürtünme faktöründen f 4 kat daha büyük olduğu herhangi bir işleme başlamadan ya da çizelge kullanılmadan önce not edilmelidir. Darcy-Weisbach faktörü inşaat ve matematik mühendisleri tarafından, Fanning sürtünme faktörü ise kimya mühendisleri tarafından yaygın kullanılır.

Çoğu çizelge ve tablo sürtünme faktörünün tipini belirtir, en azından yavaş akış için formülü verir. Eğer ki yavaş akış için formül f = 16/Re ise Fanning faktörü f, eğer formül fD = 64/Re ise Darcy-Weisbach sürtünme faktörü fD'dir.

Moody şeması kullanırken eğer ki yayıncı formuülü belirtmediyse, formuülü şemadan çıkarmak için şu adımlar uygulanır;

  1. Yavaş akış için Reynold Sayısı 1000'e denk gelen sürtünme faktörü gözlemlenir.
  2. Eğer ki sürtünme faktörü 0.064 ise Darcy sürtünme faktörü işlenmiş demektir. Sayıdaki sıfır olmayan değerlerformülün pay kısmıdır. fD = 64/Re.
  3. Eğer ki sürtünme faktörünün değeri 0.016 ise Fanning sürtünme faktörü işlenmiş demektir. Sayıdaki sıfır olmayan değerler formülün pay kısmıdır. f = 16/Re.

Yukarıdaki işleyiş 10'un kuvvetleri şeklindeki bütün Reynold sayıları için aynıdır. Sayının 1000 olması değil 10'un kuvveti olması önemlidir.

Tarihçe

Tarihsel olarak bu eşitlik Prony Eşitliği'nin bir değişkeni olarak ortaya çıkmıştır ve bu değişken Fransa'dan Henry Darcy tarafından geliştirilmiştir ve Saksonya'da Julius Weisbach tarafından 1854'te bugünkü şekline büründürülmüştür. İlk başlarda sürtünmenin hıza göre çeşitlenmesindeki bilgi bir eksiklikti. Bu yüzde Darcy-Weisbach eşitliği ilk olarak deneysel Prony vakalarında çok işe yaradı. Sonraki yıllarda sadece kesin bilinen akış bölgelerinde geçerli deneysel eşitlikler lehine çok özel durumlardan sakınıldı. Hesaplamalarda çok daha basit lan Hazen-Williams veya Mannings eşitlikleri kullanılırdı. Hesap makinelerinin icadından sonra hesaplama yapmak basitleştiği için Darcy-Weisbach eşitliği tekrar tercih edilmeye başlandı.

Türetim

Darcy-Weisbach eşitliği boyutsal analizler sonucu elde edilen olaybilimsel bir formüldür.

Borunun uçlarından uzakta akışın özellikleri bulunduğu yerden bağımsızdır. Anahtar özellikler birim uzunluktaki basınç kaybı Δp/L ve hacimsel akış oranıdır. Akış oranı ıslanan alana bölünerek ortalama hıza dönüştürülebilir. (Borunun tamamı suyla doluysa kesit alana eşittir.)

Basınç, birim hacim başına düşen boyutsal enerjidir. Öyleyse iki nokta arasındaki basınç kaybı(1/2)ρV2 ile orantılı olmalıdır. (Birim hacim başına düşen kinetik enerji ile aynı açılım.) Aynı zamanda birim uzunlukta basınç kaybı sabitken basıncın iki nokta arasındaki uzaklıkla da orantılı olduğunu biliyoruz. Bu ilişkiyi boyutsuz niceliğin orantılı katsayısına çevirmek için hidrolik çapa,D, bölebiliriz. Bu da boru boyunca sabittir, öyleyse;

Orantılı katsayı Darcy sürtünme faktörü ya da akış katsayısıdır. Bu boyutsuz katsayıπ, Reynold sayısı ve de borunun göreceli sertliğinin bir birleşimidir.

Takip eden sebeplerden ötürü (1/2)ρV2 birim hacimden akan sıvının kinetik enerjisi değildir. Yavaş akışta bile bütün akış çizgileri borunun uzunluğuna paraleldir, iç yüzeydeki akış hızı ağdalılıktan ötürü sıfırdır ve borunun merkezindeki akış hızı, akış oranının ıslak alana bölünmesiyle elde edilen ortalama hızdan yüksek olmalıdır. Ortalama kinetik enerji hızın ortalama karesini içerir ve her zaman ortalama hızın karesini aşar. Hızlı akış durumunda akışkan her yöne rastgele, boruya dik olanlar dahil olmak üzere hız bileşenleri kazanır ve burgaç birim hacime düşen kinetik enerjiye katkı sağlar ancak hızın uzunlamasına ortalamasına katkısı yoktur.

Pratik uygulamalar

Hidrolik mühendislik uygulamalarında borudaki yük kaybını hacimsel akış oranı cinsinden açıklamak için çok tercih edilir. Bunun için Darcy-Weisbach eşitliğinin aşağıdaki şekli kullanılır;

  • V akışkanın ortalama hızı. Birim ıslanan kesit alnında hacimsel akış oranına eşittir (m/s);
  • Q hacimsel akış oranı (m³/s);
  • Aw ıslak kesit alanı (m²).

Rastgele dolu bir boru için Aw değeri tam olarak bilinemez. Borunun eğimi, kesitsel şekil, akış oranı ve diğer değişkenlere bağlı bir örtük fonksiyona dönüşür. Boru tam dolu kabul edilirse;

D borunun çapı.

Bu sonuçları orijinal formülde yerine yazarsak yük kaybını hacimsel akış oranı cinsinden tamamen akışlı dairesel bir boru için bulabiliriz:

Ayrıca bakınız

  • Su borusu
  • Hagen-Poiseuille eşitliği

Kaynakça

  1. ^ Manning, Francis S.; Thompson, Richard E. (1991), Oilfield Processing of Petroleum. Vol. 1: Natural Gas, PennWell Books, ISBN 0-87814-343-2 , 420 pages. See page 293.
  2. ^ The Darcy-Weisbach Equation 26 Ağustos 2012 tarihinde Wayback Machine sitesinde arşivlendi. by Glenn Brown, Oklahoma State University

Konuyla ilgili yayınlar

  • De Nevers (1970), Fluid Mechanics, Addison–Wesley, ISBN 0-201-01497-1 
  • Shah, R. K.; London, A. L. (1978), "Laminar Flow Forced Convection in Ducts", Supplement 1 to Advances in Heat Transfer, New York: Academic 
  • Rohsenhow, W. M.; Hartnett, J. P.; Ganić, E. N. (1985), Handbook of Heat Transfer Fundamentals (2. bas.), McGraw–Hill Book Company, ISBN 0-07-053554-X 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Akışkanlar dinamiği</span> hareket halindeki akışkanların (sıvılar ve gazlar) doğal bilimi

Fizik, fiziksel kimya ve mühendislikte akışkanlar dinamiği, akışkanların akışını tanımlayan akışkanlar mekaniğinin bir alt disiplinidir. Aerodinamik ve hidrodinamik dahil olmak üzere çeşitli alt disiplinleri vardır. Akışkanlar dinamiğinin, uçaklardaki kuvvetlerin ve momentlerin hesaplanması, boru hatları boyunca petrolün Kütle akış hızının belirlenmesi, hava durumu modellerinin tahmin edilmesi, uzaydaki bulutsuların anlaşılması ve fisyon silahı patlamasının modellenmesi dahil olmak üzere geniş bir uygulama yelpazesi vardır.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Reynolds sayısı</span>

Akışkanlar dinamiği alanında, Reynolds sayısı, farklı durumlarda akışkan akışı desenlerini tahmin etmeye yardımcı olan bir boyutsuz sayıdır ve eylemsizlik kuvvetleri ile viskoz kuvvetler arasındaki oranı ölçer. Düşük Reynolds sayılarında, akışlar genellikle laminer akış tarafından domine edilirken, yüksek Reynolds sayılarında akışlar genellikle türbülanslı olur. Türbülans, akışkanın hız ve yönündeki farklılıklardan kaynaklanır ve bazen bu yönler kesişebilir veya akışın genel yönüne ters hareket edebilir. Bu girdap akımları, akışı karıştırmaya başlar ve bu süreçte enerji tüketir, bu da sıvılarda kavitasyon olasılığını artırır.

Debi, bir akışkanın aktığı izleğin herhangi bir kesitinden birim zamanda geçen akışkan hacmidir.

Fizikte, birim zamanda aktarılan veya dönüştürülen enerjiye ya da yapılan işe güç denir, P simgesiyle gösterilir. Uluslararası Birim Sistemi'nde güç birimi, saniyedeki bir joule'e eşit olan watt'tır kısacası J/s. Eski çalışmalarda güç bazen iş olarak adlandırılırmıştır. Güç türetilmiş bir nicelik ve skaler bir büyüklüktür.

<span class="mw-page-title-main">Bernoulli ilkesi</span>

Akışkanlar dinamiğinde Bernoulli prensibi, sürtünmesiz bir akış boyunca, hızda gerçekleşen bir artışın aynı anda ya basınçta ya da akışkanın potansiyel enerjisinde azalmaya neden olduğunu ifade eder. Bernoulli prensibi, adını Hollanda-İsviçre kökenli matematikçi Daniel Bernoulli'den almıştır. Bernoulli bu prensibini 1738 yılında Hydrodynamica adlı kitabında yayınlamıştır.

<span class="mw-page-title-main">Hız</span> vektörel bir fiziksel nicelik

Hız, bir nesnenin hareket yönü ile birlikte olan süratini ifade eder. Hız, cisimlerin hareketini tanımlayan bir klasik mekanik dalı olan kinematikte temel bir kavramdır.

Fizik ve mühendislikte, kütle akış hızı, bir maddenin geçtiği belirli bir yüzeyden birim zamana geçen kütle miktarıdır. SI'daki birimi, kilogram bölü saniyedir. Yaygın kullanılan sembolü olmasına rağmen bazen μ kullanılır.

Akışkanlar dinamiğinde, bir sıvı tarafından çevrelenmiş ve hareket halinde olan bir cisim tarafından hissedilen sürüklenim kuvvetini bulmak için sürüklenim denklemi kullanılır. Bu formül belli koşullar altında daha tutarlı sonuçlar verir:

Akışkanlar dinamiğinde, sürüklenim bir sıvı içerisinde hareket eden bir cismin hareket yönüne zıt yönde etki eden kuvvet topluluğuna denir. Bu kuvvet iki sıvı yüzeyi arasında veya bir katı ve bir sıvı yüzeyi arasında olabilir. Diğer durdurucu kuvvetler nazaran sürüklenim kuvveti hıza bağlıdır. Bir sıvının akış yönü hizasında bulunan katı bir cisme göre, sürüklenim kuvvetleri sıvının hızını her zaman azaltır.

Dean sayısı (De), akışkanlar mekaniği alanında, özellikle eğri borular ve kanallarda meydana gelen akış dinamiklerinin incelenmesinde kullanılan bir boyutsuz sayıdır. Bu terim, Britanyalı bilim insanı William Reginald Dean'in adını taşımaktadır. Dean, laminer akış durumunda, düz bir borudaki Poiseuille akışından, çok küçük bir eğrilik içeren bir boruya kadar olan akışın teorik çözümünü bir bozulma yöntemi kullanarak ilk kez sunmuştur. Bu çalışma, eğri borulardaki akış mekaniklerinin anlaşılmasında temel bir adım olarak kabul edilir.

<span class="mw-page-title-main">Kaya geçirgenliği</span>

Akışkanlar mekaniğinde ve yer bilimlerinde geçirgenlik, gözenekli bir malzemenin akışkanların içinden geçmesine izin verme yeteneğinin bir ölçüsüdür. Ölçü birimine Henry Darcy'den (1803-1858) adı verilen darcy ya da milidarcy (md) denir.

Darcy yasası , bir sıvının gözenekli bir ortamdan akışını tanımlayan bir denklemdir. Yasa, yer bilimlerinin bir kolu olan hidrojeolojinin temeldir. Kum yataklarından su akışı ile ilgili deneylerin sonucu.

<span class="mw-page-title-main">Manning formülü</span> Formül

Manning formülü, sıvıyı tamamen kapatmayan bir kanalda akan sıvının ortalama hızını, yani açık kanal akışını tahmin eden ampirik bir formüldür. Ayrıca, bu denklem, açık kanal akışınınki gibi serbest bir yüzeye sahip olduklarından, kısmen dolu kanallardaki akış durumunda akış değişkenlerinin hesaplanması için de kullanılmaktadır. Açık kanallardaki tüm akış, yerçekimi tarafından yönlendirilmektedir. İlk olarak 1867'de Fransız mühendis Philippe Gauckler tarafından sunulmuştur. Gelecek yıllarda, 1890'da, İrlandalı mühendis Robert Manning tarafından yeniden geliştirilmiştir.

Euler sayısı (Eu), akışkan akışı hesaplamalarında kullanılan bir boyutsuz sayıdır. Bu sayı, yerel bir basınç düşüşü ile akışın birim hacim başına kinetik enerjisi arasındaki ilişkiyi ifade eder ve akıştaki enerji kayıplarını karakterize etmek için kullanılır. Mükemmel sürtünmesiz bir akış, Euler sayısının 0 olduğu duruma karşılık gelir. Euler sayısının tersi, sembolü Ru olan Ruark Sayısı olarak adlandırılır.

Fanning sürtünme faktörü veya Fanning sürtünme katsayısı, John Thomas Fanning'in adını taşıyan ve sürekli ortamlar mekaniği hesaplamalarında kullanılan boyutsuz bir sayıdır. Bu faktör, yerel kayma gerilmesi ile yerel akış kinetik enerji yoğunluğu arasındaki oranı ifade eder:

Hidrolik çap, DH, akışkan dinamiğinde, dairesel olmayan boru ve kanallardaki akışları ele alırken yaygın olarak kullanılan bir terimdir. Bu terim kullanılarak, birçok hesaplama dairesel bir borudaki gibi yapılabilir. Kesit alanı, boru veya kanal boyunca sabit olduğunda şu şekilde tanımlanır:

<span class="mw-page-title-main">Sürükleme katsayısı</span> bir nesnenin hava veya su gibi sıvı bir ortam içinde sürtünmesi ya da direnç göstermesini nicelendirmek için kullanılan boyutsuz miktar

Akışkanlar dinamiği alanında, sürükleme katsayısı, bir nesnenin hava veya su gibi bir akışkan ortamında maruz kaldığı sürükleme veya direnç miktarını belirlemek için kullanılan bir boyutsuz niceliktir. Sürükleme denkleminde kullanılır ve daha düşük bir sürükleme katsayısı, nesnenin daha az aerodinamik veya hidrodinamik sürüklemeye sahip olacağını ifade eder. Sürükleme katsayısı her zaman belirli bir yüzey alanına bağlı olarak değerlendirilir.

Akışkanlar dinamiği alanında, basınç katsayısı bir boyutsuz sayı olup, bir akış alanındaki bağıl basınçları ifade eder. Basınç katsayısı, aerodinamik ve hidrodinamik çalışmalarında kullanılmaktadır. Her bir akış alanında, her konumsal noktanın kendine özgü bir basınç katsayısı, Cp değeri bulunmaktadır.

<span class="mw-page-title-main">Weber sayısı</span>

Weber sayısı (We), akışkanlar mekaniği alanında farklı iki akışkan arasındaki ara yüzeylerin bulunduğu akışkan akışlarını analiz ederken sıkça kullanılan bir boyutsuz sayıdır ve özellikle yüksek derecede eğilmiş yüzeylere sahip çok fazlı akışlar için oldukça faydalıdır. Bu sayı, Moritz Weber (1871–1951)'in adıyla anılmaktadır. Bu sayı, akışkanın eylemsizliğinin yüzey gerilimine kıyasla göreceli önemini ölçmek için kullanılan bir parametre olarak düşünülebilir. İnce film akışlarının ve damlacık ile kabarcık oluşumlarının analizinde büyük önem taşır.