İçeriğe atla

Dalga vektörü

Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır (dalga boyu ile ters orantılıdır). Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.

Tanımları

Ne yazık ki dalga vektörünün, kendi büyüklüklerinde 2π faktörü ile ayrılan iki genel tanımı vardır. Bir tanımı fizik ve ilgili alanlarda tercih edilirken diğeri ise kristal bilimi ve ilgili alanlarda tercih edilir. Bunlara “fizik tanımı” ve “kristal bilimi tanımı” denir.

Fizik Tanımı

Mükemmel bir tek-boyutlu hareketli dalga denklemi aşağıdaki gibidir:

• x: yer • t: zaman • : dalganın bozulması • A: dalganın genliği: faz dengesi • : dalganın açısal frekansı: dalga sayısı Bu dalga +x yönünde, hızıyla hareket etmektedir.

Kristal Bilimi Tanımı

Kristal biliminde, aynı dalgalar biraz farklı denklemler kullanılarak açıklanmıştır. Sırasıyla bir ve üç boyutlu dalgalar:

Farklılıklar: • Açısal frekans yerine, frekans kullanılmıştır (). Bu eşitlik Bu denklem için önemli değil, ama kristal biliminde yaygın bir uygulamadır. • Dalga sayısı ‘’k’’ ve vektör olan ‘’’k’’’ farklı şekillerde tanımlanmıştır. Burada, iken, fizik tanımında, budur.

Dalga Vektörünün Yönü

Dalga vektörü noktaları "dalga yayılması yönünde" ayırt edilmelidir. "Dalga yayılımının yönü" bir dalganın enerji akışının ve küçük bir dalga paketinin hareket edeceği yöndür. Işık dalgaları için, ayrıca Poynting Vektörünün yönüdür. Dalga vektörü noktaları faz hızı yönündedir. Sabit fazın yüzeyinde, normal yönde, dalga vektörü noktaları, aynı zamanda dalganın önü olarak adlandırılır. Hava, herhangi bir gaz, sıvı ya da bazı katılar gibi kayıpsız eş yönlü bir ortam içinde, dalga vektörünün yönü dalga yayılma yönü ile tam olarak aynıdır. Homojen bir dalganın yüzeyinin büyüklüğü sabittir ve sabit bir faza sahiptir. Homojen olmayan dalgalar için bunlar söylenemez. Ancak, simetrik olmayan kristaldeki ışık dalgası ya da tortul kayadaki ses dalgası gibi eş yönlü olmayan ortamlarda dalga vektörü dalga yönüyle aynı olabilir.

Katı Hal Fiziğinde

Katı hal fiziğinde, kristalin içindeki bir elektronun “dalga vektörü” onun kuantum mekanik dalga fonksiyonudur. Bu elektron dalgaları sıradan sinüs dalgaları değildir, dalga vektörü bu kaplama dalga ile tanımlanır. Genellikle “fizik tanımı” kullanılır.

Özel Görelilikte

Tek renkli bir dalga ışını 4-vektör dalgası ile karakterize edilebilir.

Daha da açık yazmak gerekirse,

and

4-vektör dalgası, frekans ve 4-vektör dalgasının uzaysal bölümünün büyüklüğü arasında bir bağlantı verir:

4-vektör dalgası, dört ivme ile ilgidir.

Lorentz Dönüşümü

Dalga vektörünün Lorentz dönüşümü Doppler etksini elde etmek için tek yoldur. Lorentz matrisi:

Bir kaynak tarafından hızlı bir şekilde hareket eden ışık kaynağını, dünya çerçevesinde inceleyerek frekansını bulmak amacıyla, aşağıdaki gibi Lorentz dönüşümü uygulanır.

İçinde sadece bulunan sonuçlara bakarsak:

Not: , ile arasındaki açının kosinüsüdür. Yani:

Uzaklaşan Kaynak

Örnekte olduğu gibi kaynaktan uzaklaşan bir gözlemci için:

Kaynağa Doğru Hareket

İlgili Araştırma Makaleleri

Planck sabiti (h), bir fizik sabitidir ve kuantum mekaniğindeki aksiyonum kuantumu için kullanılır. Değeri h= 6.62607015×10−34 J⋅s' dir. Planck sabiti daha önceleri bir Fotonun enerjisi (E) ile elektromanyetik dalgasının frekansı (ν) arasında bir orantı idi. Enerji ile frekans arasındaki bu ilişki Planck ilişkisi veya Planck formülü olarak adlandırılır:

<span class="mw-page-title-main">Ki-kare dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında ki-kare dağılım özellikle çıkarımsal istatistik analizde çok geniş bir pratik kullanım alanı bulmuştur.

<span class="mw-page-title-main">Üstel dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında üstel dağılımı bir sürekli olasılık dağılımları grubudur. Sabit ortalama değişme haddinde ortaya çıkan bağımsız olaylar arasındaki zaman aralığını modelleştirirken bir üstel dağılım doğal olarak ortaya çıkar.

Açısal hız, bir objenin birim zamandaki açısal olarak yer değiştirme miktarına verilen isimdir. Açısal hız vektörel olup bir cismin bir eksen üzerindeki dönüş yönünü ve hızını verir. Açısal hızın SI birimi radyan/saniyedir, ancak başka birimlerde de ölçülebilir. Açısal hız genellikle omega sembolü ile gösterilir. Açısal hızın yönü genellikle dönüş düzlemine diktir ve sağ el kuralı ile bulunabilir.

Bir elektromanyetik dalganın yayılma sabiti, verilen yönde yayılan dalganın genliğindeki değişimin bir ölçüsüdür. Ölçülen nicelik bir elektrik devresindeki gerilim veya akım olabileceği gibi elektrik alan veya akım yoğunluğu gibi bir alan vektörü de olabilir. Yayılma sabiti metre başına değişimin bir ölçüsü olmasının yanı sıra boyutsuz bir niceliktir.

Elektromanyetik dalga denklemi, elektromanyetik dalgaların bir ortam boyunca ya da bir vakum ortamı içerisinde yayılmasını açıklayan, ikinci dereceden bir kısmi diferansiyel denklemdir. Denklemin, ya elektrik alanı E ya da manyetik alan B cinsinden yazılan homojen formu şöyledir:

<span class="mw-page-title-main">İletim hattı</span>

İletim hattı, elektronik ve haberleşme mühendisliğinde, akımın dalga karakteristiğinin hesaba katılmasını gerektirecek kadar yüksek frekanslarda, radyo frekansı, alternatif akımın iletimi için tasarlanmış özel kablo. İletim hatları radyo vericisi, alıcısı ve bunların anten bağlantıları, kablolu televizyon yayınlarının dağıtımı ve bilgisayar ağları gibi yerlerde kullanılır.

Fizikte, Lorentz dönüşümü adını Hollandalı fizikçi Hendrik Lorentz'den almıştır. Lorentz ve diğerlerinin referans çerçevesinden bağımsız ışık hızının nasıl gözlemleneceğini açıklama ve elektromanyetizma yasalarının simetrisini anlama girişimlerinin sonucudur. Lorentz dönüşümü, özel görelilik ile uyum içerisindedir. Ancak özel görelilikten daha önce ortaya atılmıştır.

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.

Modern kuantum (nicem) mekaniğinden önce gelen eski kuantum (nicem) kuramı, 1900 ile 1925 yılları arasında elde edilen sonuçların birikimidir. Bu kuramın, klasik mekaniğin ilk doğrulamaları olduğunu günümüzde anladığımız bu kuram, ilk zamanlar tamamlanmış veya istikrarlı değildi. Bohr modeli çalışmaların odak noktasıydı. Eski kuantum döneminde, Arnold Sommerfield, uzay nicemlenimi olarak anılan açısal momentumun (devinimin) z-bileşkesinde nicemlenim yaparak önemli katkılarda bulunmuştur. Bu katkı, electron yörüngelerinin dairesel yerine eliptik olduğunu ortaya çıkarmıştır ve kuantum çakışıklık kavramını ortaya atmıştır. Bu kuram, electron dönüsü hariç Zeeman etkisini açıklamaktadır.

<span class="mw-page-title-main">Elektromanyetizmanın eşdeğişim formülasyonu</span>

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.

<span class="mw-page-title-main">Grup hızı</span> dalga şiddetinin genel şekli ile boşlukta yayılan hızı

Bir dalganın grup hızı, dalga şiddetinin genel şekli ile boşlukta yayılan hızıdır. Örneğin, bir taşın, durgun bir su birikintisinin ortasına atıldığında ne olabileceğini düşünelim. Taş suyun yüzeyine geldiği anda, o bölgede dairesel dalgalanmalar meydana gelir. Kısa bir süre içinde, hareketsiz bir merkezden yayılan bu dalgalar dairesel halkalara dönüşür. Giderek genişleyen bu dairesel halkalar, farklı hızlarda yayılan ve farklı dalga boylarına sahip daha küçük dalgaları kendi içerisinde birbirinden ayırabilen bir dalga grubudur. Uzun dalgalar, tüm gruba kıyasla daha hızlı yol alabilirken; sona doğru yaklaştıkça kaybolurlar. Kısa dalgalar ise daha yavaş yol alırlar ve bir önceki dalga sınırına ulaştıklarında yok olurlar.

Einstein-Hilbert etkisi genel görelilikte en küçük eylem ilkesi boyunca Einstein alan denklemleri üretir. Hilbert etkisi genel görelilikte yerçekiminin dinamiğini tarifleyen fonksiyonel işlemdir. metrik işaretiyle, etkinin çekimsel kısmı,

<span class="mw-page-title-main">Stres-enerji tensörü</span>

Stres-enerji tensörü, fizikte uzayzaman içerisinde enerji ve momentumun özkütle ve akısını açıklayan, Newton fiziğindeki stres tensörünü genelleyen bir tensördür. Bu, maddedinin, radyasyonun ve kütleçekimsel olmayan kuvvet alanının bir özelliğidir. Stres-enerji tensörü, genel göreliliğin Einstein alan denklemlerindeki yerçekimi alanının kaynağıdır, tıpkı kütle özkütlesinin Newton yerçekiminde bu tip bir alanın kaynağı olması gibi.

<span class="mw-page-title-main">Planck yasası</span> belirli bir sıcaklıkta termal denge durumunda bulunan bir kara cisim ışımasının yaydığı elektromanyetik radyasyonu ifade eden terim

Planck yasası belirli bir sıcaklıkta termal denge durumunda bulunan bir kara cisim ışımasının yaydığı elektromanyetik radyasyonu ifade eder. Yasa 1900 yılında Max Planck bu ismi önerdikten sonra isimlendirilmiştir. Planck yasası modern fiziğin ve kuantum teorisinin öncül bir sonucudur.

<span class="mw-page-title-main">Duran dalga</span>

Fizikte duran dalgalar, zamana göre salınım yapmasına rağmen belli bir bölgede sabit duran dalgalardır. Bu dalgaların uzayda herhangi bir noktadaki maksimum genliği zamana göre sabittir ve salınımları eş fazdadır. Bir duran dalgada genliğin minimum kaldığı noktalar düğüm (node), maksimum olduğu noktalar ise anti-düğüm (anti-node) olarak bilinir.

<span class="mw-page-title-main">Dağılma</span>

Elektromanyetizmada ve optikte dağılma ya da dispersiyon, elektromanyetik dalganın ilerlediği ortamdaki faz hızının frekansına bağlı olması durumudur. Kırılma indisinin frekansa bağlılığı olarak da tanımlanabilmektedir. Bu özelliğe sahip ortamlar dağıtıcı ortamlar olarak bilinir. Faz hızı ile grup hızının eşit olması durumunda dağılma sıfırlanır; grup hızının daha büyük olması anormal dağılma olarak bilinir. İletim hatları ve optik fiberler gibi dalga kılavuzlarında dalga yayılımını büyük ölçüde etkileyen dağılma, dalga denkleminin geçerliği olduğu diğer sistemlerde de gözlemlenebilmektedir.

<span class="mw-page-title-main">Dize titreşimi</span>

Bir dizedeki (tel) [[titreşim]] bir ses dalgasıdır. Rezonans titreşen bir dizenin sabit frekanslı, yani sabit perdeli bir ses üretmesine neden olur. Telin uzunluğu veya gerginliği doğru şekilde ayarlanırsa üretilen ses bir [[müzik tonu]] olur. Titreşimli teller gitar, [[Viyolonsel|çello]] ve piyano gibi yaylı çalgıların temelini oluşturur.

MS 2. yüzyılda Mısır'da Yunan astronom, coğrafyacı ve jeolog Batlamyus tarafından oluşturulan kirişler tablosu, matematiksel astronomi üzerine bir inceleme olan Batlamyus'un Almagest adlı eserinin Kitap I, bölüm 11'inde yer alan bir trigonometrik tablodur. Esasen sinüs fonksiyonunun değer tablosuna eşdeğerdir. Astronomi de dahil olmak üzere birçok pratik amaç için yeterince kapsamlı olan en eski trigonometrik tablodur. 8. ve 9. yüzyıllardan beri sinüs ve diğer trigonometrik fonksiyonlar, İslam matematiği ve astronomisinde kullanılmış ve sinüs tablolarının üretiminde reformlar yapılmıştır. Daha sonra Muhammed ibn Musa el-Harezmi ve Habeş el-Hâsib bir dizi trigonometrik tablo üretmiştir.