İçeriğe atla

Dalga denklemi

1 boyutlu dalga denklemi.

Dalga denklemi fizikte çok önemli yere sahip bir kısmi diferansiyel denklemdir. Bu denklemin çözümlerinden, ses, ışık ve su dalgalarının hareketlerini betimleyen fiziksel nicelikler çıkar. Kullanım alanı, akustik, akışkanlar mekaniği ve elektromanyetikte oldukça fazladır. Genellikle elektromanyetik dalgalar gibi dalgalar için dalga denkleminin vektörel formülasyonu kullanılır. Bu formülasyonda elektrik alanları şeklindeki vektörlerle gösterebilir ve vektörün her bi bileşeni skaler dalga denklemine uymak zorundadır. Yani vektörel dalga denklemleri çözülürken her bir bileşen ayrı ayrı çözülür. Denklemin en basit hali aşağıdaki şekliyle gösterilir,

Burada c reel bir sabittir ve genellikle dalganın hızıdır, u bir dalganın pozisyonunu gösterir, t zamandır ve x dalganın uzaydaki pozisyonudur. Denklemin dalga hareketinde bulunan herhangi bir u skaler büyüklüğü için birkaç diğer gösterimleri aşağıdaki gibidir,

Gösterim Açıklama
operatörü
: u'nun zamana göre 2. türevi
: d'Alembert İşlemcisi

Dalganın dağılması, yani ilerledikçe başka başka frekanslar haline bürünmesi olgusu (dağılım) göz önüne alınırsa denklemde c yerine faz hızı kullanılır. Ayrıca daha gerçekçi sistemlerde hızın, dalganın genliğine bağlı olduğu dikkate alındığından denklem doğrusal olmayan

şeklinde biçimlenir.

Tek boyutta çözümü

Laplasyen tek boyutta adi türeve dönüşür.

d'Alembert çözümü

ve

tanımları yapılarak zincir kuralı yardımıyla:

yazılabilir.

olduğundan,

ifadesi ve aynı yol izlenerek

ifadesi elde edilebilir. İki denklem birbirinden çıkartılarak dalga denklemi buradan,

olarak yazılır. Dolayısıyla denklem,

durumuna indirgenmiş olur. Kısmî diferansiyel denklemin çözümü, tek tek değişkenler için integral alınarak

olarak bulunur. Burada f, +x yönünde ilerleyen, g de -x yönünde ilerleyen düzlem dalgayı betimler.

Fourier dönüşümü ile

Denklem yazılıp iki tarafa da Fourier dönüşümü yapılırsa

biçimine dönüşür.

denkliği kullanılarak

diferansiyel denklemi elde edilir. Burada, dönüşümü de uygulanarak dalga denkleminin w,k uzayındaki dağılım (dispersion) ilişkisini vermesi görülebilir. Elde edilmiş olan diferansiyel denklemin çözüm...

olarak elde edilir. Ancak bu çözüm konum uzayı x de değil, başka bir uzay olan k uzayındaki çözümdür. Çözümün konum uzayında bulunabilmesi için k uzayındaki çözüme ters Fourier dönüşümü uygulanır.

çözülüerek

Görüldüğü üzere birinci ve ikinci terim sırasıyla f ve g diye iki fonksiyonun Fourier dönüşümleri olarak kabul edilirse x uzayındaki çözüm

olarak elde edilir.

Değişkenlere ayırma yöntemi ile

Dalga denklemi karışık türevler içermediği için değişkenlere ayırma yöntemi kullanılarak da çözüme gidilebilir.

olarak yazılır ve denkleme konulursa denklem şu hali alır:

iki taraf da u ya bölünürse

iki tane birbirinden bağımsız değişkenin olduğu ifade birbirine ancak bir sabite eşit olmaları durumunda eşit olabileceğinden iki denklem de ayrı ayrı bu sabite eşitlenerek çözümler bulunabilir. Bu sabit pozitif, negatif ve sıfır olması durumlarında incelenerek diferansiyel denklemler çözülebilir ancak fizikte zaman genelde salınım olarak ortaya çıktığından sabit, , k:reel seçilerek fiziksel olarak anlamlı çözüme hızlıca gidilebilir. Böylece denklemin sol tarafından:

ve sağ tarafından da

bulunur. Sinüs ve kosinüs ile elde edilen çözümler sınır koşullarını rahatça sağlayacaklarından genellikle sınır değer problemlerinde kullanılırlar. Dalga boşlukta hareket eden bir elektromanyetik bir ışınsa o zaman çözümleri ve olarak vermek daha rahat olur. Matematiksel olarak iki çözüm de doğru olmasına rağmen fiziksel kaidelerden serbest ve bağlı olarak çözümler böyle sınıflandırılabilir.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Dalga fonksiyonu</span>

Kuantum fiziğinde dalga fonksiyonu izole bir kuantum sistemindeki kuantum durumunu betimler. Dalga fonksiyonu karmaşık değerli bir olasılık genliğidir ve sistem üzerindeki olası ölçümlerin olasılıklarının bulunmasını sağlar. Dalga fonksiyonu için en sık kullanılan sembol Yunan psi harfidir ψ ve Ψ.

Fourier dönüşümü, fizik, mühendislik ve matematikte, bir fonksiyonu, içerdiği frekansların belirtildiği bir biçime dönüştüren bir integral dönüşümüdür. Dönüşümün çıktısı, frekansa bağlı karmaşık değerli bir fonksiyondur. "Fourier dönüşümü" terimi, hem bu karmaşık değerli fonksiyon için hem de buna karşılık gelen matematiksel operasyon için kullanılmaktadır. Bu ayrımın netleştirilmesi gerektiğinde, Fourier dönüşümü bazen orijinal fonksiyonun frekans uzayında temsili olarak adlandırılır. Fourier dönüşümü, bir müzik akorunun sesini, onu oluşturan tonlara ayrıştırmaya benzer.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Ampère kanunu</span>

Klasik elektromanyetizmada Ampère yasası kapalı bir eğri üzerinden integrali alınmış manyetik alanla o eğri üzerindeki elektrik akımı arasındaki ilişkiyi açıklayan yasadır. James Clerk Maxwell yasayı hidrodinamik olarak 1861 tarihli Fizikte kuvvet çizgileri üzerine makalesinde tekrar kanıtlar. Yasanın matematiksel ifadesi şu anda klasik elektromanyetizmayı oluşturan dört temel Maxwell denkleminden biridir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

Fizikte akustik dalga denklemi, akustik dalgaların bir ortamda yayılımını düzenler. Denklemin biçimi ikinci dereceden kısmi diferansiyel denklemdir. Denklem, akustik basınç ve parçacık hızı u nun gelişimini, konum r ve zaman türünden fonksiyon olarak ifade eder. Denklemin basitleştirilmiş bir formu akustik dalgaları sadece bir boyutlu uzayda, daha genel formu ise dalgaları üç boyutta tanımlar.

Değişken değiştirme, İntegral, çarpanlara ayırma, denklemler, üslü denklemler, trigonometri ve diferansiyel denklemler başta olmak üzere matematiğin her alanında işlemi basitleştirmek için kullanılan matematiksel bir yöntemdir.

<span class="mw-page-title-main">Vektör alanı</span> oklid uzayının seçilen bir alt kümesinin her bir noktasında yöneyin belirlenmesidir.

Yöney alan, Öklid uzayının seçilen bir alt kümesinin her bir noktasında yöneyin belirlenmesidir. Düzlemdeki bir yöney alanı, her biri düzlemdeki bir noktaya ilişik, yönü ve büyüklüğü olan oklar topluluğu olarak düşünülebilir.

<span class="mw-page-title-main">Elektromanyetizmanın eşdeğişim formülasyonu</span>

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.

<span class="mw-page-title-main">Grup hızı</span> dalga şiddetinin genel şekli ile boşlukta yayılan hızı

Bir dalganın grup hızı, dalga şiddetinin genel şekli ile boşlukta yayılan hızıdır. Örneğin, bir taşın, durgun bir su birikintisinin ortasına atıldığında ne olabileceğini düşünelim. Taş suyun yüzeyine geldiği anda, o bölgede dairesel dalgalanmalar meydana gelir. Kısa bir süre içinde, hareketsiz bir merkezden yayılan bu dalgalar dairesel halkalara dönüşür. Giderek genişleyen bu dairesel halkalar, farklı hızlarda yayılan ve farklı dalga boylarına sahip daha küçük dalgaları kendi içerisinde birbirinden ayırabilen bir dalga grubudur. Uzun dalgalar, tüm gruba kıyasla daha hızlı yol alabilirken; sona doğru yaklaştıkça kaybolurlar. Kısa dalgalar ise daha yavaş yol alırlar ve bir önceki dalga sınırına ulaştıklarında yok olurlar.

<span class="mw-page-title-main">Lagrange mekaniği</span> Klasik mekaniğin yeniden formüle edilmesi

Lagrange mekaniği, klasik mekaniğin yeniden formüle edilmesidir. İtalyan-Fransız matematikçi ve astronom Joseph-Louis Lagrange tarafından 1788’de geliştirilmiştir.

Fourier optiği dalgaların yayılma ortamını kendisinin doğal modu olduğunu kabul etmek yerine, belirli bir kaynağa sahip olmayan düzlemsel dalgaların üstdüşümlerin olarak addeden Fourier dönüşümlerini kullanan klasik optiğin bir çalışma alanıdır. Fourier optiği, dalgayı patlayan bir küresel ve fiziksel olarak Green's fonksiyon denklemleriyle tanımlanabilen tanımlanabilen ve bu kaynağından dışarıya ışıma yapan dalganın üstdüşümü olarak adddeden Huygens-Fresnel prensibinin ikizi olarak da görülebilir.

Teorik fzikte, Nordstrom kütleçekim kanunu genel göreliliğin bir öncülüdür. Açıkçası, Fin’li teorik fizikçi Gunnar Nordström tarafından 1912 de ve 1913 te önerilen iki ayrı teori vardır. Bunlardan ilki, hızla geçerliliğini yitirmiş, ancak ikinci, yerçekimi etkileri kavisli uzay-zaman geometrisi bakımından tamamen kabul eden. kütleçekim metrik teorisinin bilinen ilk örneği olmuştur. Nordstrom teorilerinin hiçbiri gözlem ve deney ile uyum içinde değildir. Bununla birlikte, ilkinin kısa sürede üzerindeki ilgiyi kaybetmesi, ikinciyi de etkilemiştir. İkinciden geriye kalan, kütleçekim kendine yeten relativistik teorisi. Genel görelilik ve kütleçekim teorileri için temel taşı niteliği görevi görmektedir. Bir örnek olarak, bu teori, pedagojik tartışmalar kapsamında özellikle yararlıdır.

Tam diferansiyel denklem veya Sağın diferansiyel denklem fizikte ve mühendislikte sıklıkla kullanılan bir tür adi diferansiyel denklemdir.

Hamilton mekaniği klasik mekaniğin tekrar formüle edilmesiyle geliştirilmiş ve Hamilton olmayan klasik mekanik ile aynı sonuçları öngörmüş bir teoridir. Teoriye daha soyut bir bakış açısı kazandıran Hamilton mekaniği klasik mekaniğe kıyasla farklı bir matematiksel formülasyon kullanmaktadır. Tarihi açıdan önemli bir çalışma olan Hamilton mekaniği ileriki yıllarda istatistiksel mekanik ve kuantum mekaniği konularının da geliştirilmesine önemli katkılarda bulunmuştur.

<span class="mw-page-title-main">Logaritmik ortalama</span>

Matematikte logaritmik ortalama, iki pozitif gerçek sayının farkının bu sayıların doğal logaritmalarının farkına oranı olarak tanımlanır. Bu hesaplama, ısı ve kütle transferi içeren mühendislik problemlerinde kullanılabilir.