İçeriğe atla

Dairesel hareket

Fizikte, dairesel hareket bir nesnenin dairesel bir yörünge boyunca bir rotasyon ya da çemberin çevresinde yaptığı harekettir. Rotasyonun (ve sürekli hızın) sürekli açısal değeriyle birlikte düzgün ya da değişen rotasyon değeriyle düzensiz olabilir. 3 boyutlu bir cismin sabit ekseni etrafındaki rotasyon parçalarının dairesel hareketini içerir. Hareketin denkliği bir cisim kütlesinin merkezini tanımlar.

Dairesel hareketin örnekleri şunları içerir: sabit ağırlıkta Dünya yörüngesinde dönen yapay bir uydu, bir ipe bağlanmış ve daireler şeklinde sallanan bir taş, parkurda viraj boyunca dönen bir araba, düzgün bir manyetik alana dikey olarak hareket eden bir elektron ve bir mekanizmanın içerisinde dönen bir dişli. Nesnenin sürat vektörü sürekli yön değiştirdiği için, hareket eden nesne rotasyon merkezinin yöndeki merkezcil bir kuvvet tarafından ivme kazandırılıyor. Newton’un hareket yasalarına göre bu ivme olmadan nesne düz bir çizgide hareket eder.

Üniform

Figure 1: Velocity v and acceleration a in uniform circular motion at angular rate ω; the speed is constant, but the velocity is always tangent to the orbit; the acceleration has constant magnitude, but always points toward the center of rotation
Figure 2: The velocity vectors at time t and time t + dt are moved from the orbit on the left to new positions where their tails coincide, on the right. Because the velocity is fixed in magnitude at v = r ω, the velocity vectors also sweep out a circular path at angular rate ω. As dt → 0, the acceleration vector a becomes perpendicular to v, which means it points toward the center of the orbit in the circle on the left. Angle ω dt is the very small angle between the two velocities and tends to zero as dt→ 0
Figure 3: (Left) Ball in circular motion – rope provides centripetal force to keep ball in circle (Right) Rope is cut and ball continues in straight line with velocity at the time of cutting the rope, in accord with Newton's law of inertia, because centripetal force is no longer there

Fizikte, düzgün dairesel hareket dairesel bir yörüngeyi sabit süratle geçen bir cismin hareketini tanımlar. Cisminin rotasyon ekseninden uzaklığı her zaman sabit kalır. Cismin süratinin sabit olmasına rağmen, hızı sabit değildir: hız, vektörel bir büyüklük, hem cismin süratine hem gidiş yönüne bağlıdır. Bu değişken hız bir ivmenin varlığını gösterir; bu merkezcil ivme düzgün genlikten kaynaklanır ve her zaman rotasyon eksenine doğru yönlendirilir. Bu ivme dolayısıyla aynı şekilde genlikte düzgün ve rotasyon eksenine doğru yönlendirilmiş merkezcil bir güç tarafından üretilir.

Yörüngenin yarıçapına oranla göz ardı edilebilecek küçüklükte olmayan sert bir cismin sabit ekseni etrafındaki rotasyon durumunda, cismin her bir parçacığı aynı açısal sürat fakat konum ve yörüngeye bağlı olarak değişen sürat ve ivmeli bir düzgün dairesel hareket tanımlar.

Formüller

Figure 1: Vector relationships for uniform circular motion; vector Ω representing the rotation is normal to the plane of the orbit.

r yarıçaplı bir dairede hareket için, dairenin çevresi C = 2π r’dir. Bir tam dönüş için periyot T, aynı zamanda açısal sürat olarak bilinen rotasyonun açısal değeri ise ω :

Ve birimler radyan/saniye’dir.

Daireyi dolaşan nesnenin hızı:

T sürede süpürülen θ açısı:

Yöndeki değişiklikten kaynaklanan ivme:

Vektörel ilişkiler Şekil 1’de gösteriliyor. Rotasyon ekseni ω = dθ / dt genliğiyle ve yörünge düzlemine dik Ω vektörü olarak gösterilmiştir. Ω vektörünün yönü sağ el kuralı kullanılarak bulunmuştur. Rotasyon belirlemek için olan bu kuralla, sürat vektör çarpı ürün olarak verilir; F burada vektör hem Ω hem de r (t)’ye dikey, yörüngeye teğet ve ω r genliğindedir.

Aynı şekilde, ivme : olarak verilir, burada vektör ω |v| = ω2 r genliğinde hem Ω hem de v (t)’ye dikeydir ve r (t)’nin tam zıddı yöne doğrultulmuştur.

En basit olarak hız, kütle ve yarıçap sabittir.

Bir kilogramlık bir cismin saniyede bir radyanın açısal süratiyle bir metre yarıçap etrafında dairesel olarak hareket ettiğini varsayalım.

• Hız saniyede 1 metredir. • İçeriye doğru ivme 1 m / s2’dir. • 1 m / s2’de 1 kilogram merkezcil güce bağlıdır ve bu bir newton eder. • Cismin momentumu 1 kg•m•s−1’dir. • Eylemsizlik momentumu 1 kg•m²’dir. • Açısal momentumu 1 kg•m²•s−1’dir. • Kinetik enerji ½ jouledür. • Yörüngenin çevresi 2π (~ 6.283) metredir. • Hareketin devri dönüş başında 2π saniyedir. • Frekans (2π)−1 hertz’dir.

Kutupsal Koordinatlar

Figure 2: Polar coordinates for circular trajectory. On the left is a unit circle showing the changes and in the unit vectors and for a small increment in angle .

Dairesel hareket boyunca cisim herhangi bir referans yönden konumlandırılmış θ (t) açısında orijin olarak alınan yörüngenin merkezinden R sabit uzaklığı olan kutupsal koordinat sistemi olarak tanımlanabilecek bir eğride hareket eder.

Bakınız Şekil 2. vektörünün yer değişimi orijinden parçacık konumuna olan radyal vektördür:

t süresinde orijinden uzaklaşan radyal vektöre paralel birim vektörün olduğu yerdir. Ortogonal birim vektörü olarak da adlandırılan ’ye göstermek için uygun bir noktadır. ’yi yörünge boyu dolaşım yönüne doğrultmak için müsaittir.

Hız yerdeğişimin zamana göre türevidir:

Dairenin yarıçapı sabit olduğundan, hızın radyal bileşeni sıfırdır. birim vektörü değişmez zamanlı birleşme genliğine sahiptir, böylece süre değiştikçe ucu daima ile aynı açıda olan θ açısıyla birim yarıçapın dairesinde uzanır. Eğer parçacık yerdeğişimi dt sürede dθ açısıyla dönerse dθ genliğindeki birim daire üzerinde bir yay tanımlayan de döner.

Bakınız Şekil 2’deki solda birim daire. Bu yüzden,

Değişimin yönü ’ye dikey (diğer bir deyişle ) boyunca) olmalıdır çünkü yönünde d ’deki herhangi bir değişim ’nin büyüklüğünü değiştirecektir.

İşaret pozitif çünkü dθ’daki artış nesne ve ’nin yönünde hareket ettiklerini gösteriyor.

Bu yüzden hız,

haline geliyor.

Cismin ivmesi de radyal ve teğet bileşenlere ayrılabilir. İvme, hızın zamana göre türevidir:

’nin zamana göre türevi için olan aynı yöntemle bulunur. Yine, bir birim vektördür ve ucu π/2 + θ açılı bir birim daireyi takip eder. Dolayısıyla, ile dθ açısındaki bir artış ’nin dθ genliğinde bir yayı izlediğini gösterir ve ’ye ortogontal olduğu için:

Negatif işaret ’yi ’ye otogonal tutmak için zorunlu. (Aksi takdirde ve arasındaki açı dθ’daki artışla birlikte azalacaktı.) Bakınız Şekil 2 solda birim daire. Sonuç olarak ivme:

Merkezcil hızlanma yarıçap içine doğru yönlendirilen radyal bileşendir.

Teğet bileşen süratın genliğini değiştirirken:

Karmaşık sayıları kullanma

Dairesel hareket karmaşık sayılar kullanılarak tanımlanabilir. ekseni reel eksen ve ekseni sanal eksen olsun. Cismin konumu bu durumda , karmaşık “vektör”, olarak verilebilir.

sanal birim ve

reel eksen ile karmaşık vektörün açısıdır ve t süresinin bir fonksiyonudur. Yarıçap sabit olduğundan:

Her bir nokta zaman farklılığını temsil eder. Bu formül ile sürat:

haline gelir.

Ve ivme:

İlk terim yerdeğiştirme vektörüne ters yönde ve ikinci terim daha önceki sonuçlarda gösterildiği gibi dikeydir.

Tartışma

Sürat (.)(.)

Şekil 1 sürat ve ivme vektörlerinin yörüngede dört farklı noktadaki değişmeyen hareketlerini gösteriyor. v vektörü dairesel yola teğet olduğu için, iki vektör hiçbir zaman aynı yöne doğrulmaz. Nesne sabit bir hıza sahip olmasına rağmen, yönü sürekli değişir. Sürattaki bu değişim genliği sabit tutulan (süratin olduğu gibi) fakat yönü sürekli değişen a ivmesinden kaynaklanır. İvme yarıçapın içine doğru (merkezcil olarak) yönelir ve sürate diktir. Bu ivme merkezcil ivme olarak bilinir

Bir r yarıçaplı yol için, bir θ açısı süpürüldüğünde yörünge çevresinde gidilen mesafe s = rθ’dır. Bu yüzden, yörünge etrafında dönüşün hızı:

Rotasyonun açısal değeri ω’dir. (Yeniden düzenleme ile, ω = v/r.) Yani, vdeğişmez ve sürat vektörü v de sabit genlik v ile aynı ω açısal değerinde döner.

Bağıl Dairesel Hareket

Bu durumda üç ivme vektörü üç sürat vektörüne diktir,

Ve bütün referans çerçevelerinde aynı skaler sabit olarak ifade edilen düzgün ivmenin karesine dik,

Dairesel hareketin ifadesi haline gelir.

Ya da pozitif karekökünü alarak ve üç ivmeyi kullanarak, dairesel hareket için uygun ivmeye ulaşırız:

İvme

Şekil 2’deki sol daire iki komşu zamanda sürat vektörlerini gösteren yörüngedir. Sağda, bu iki sürat kuyrukları çarpıştırılmak için hareket ettiriliyor. Hız sabit olduğu için, sağdaki sürat vektörler zaman geçtikçe bir daire oluşturuyor. Bir dθ = ω dt süpürülme açısı için, v’deki değişiklik v’nin sağ açılarında ve v dθ genliğinde bir vektördü, ki bu dolayısıyla ivme genliği şöyle verilmiştir:

Bazı sürat yarıçap ve genlik değerleri için merkezcil ivme

Centripetal acceleration for some values of radius and magnitude of velocity
|v|


  r
1 m/s
3.6 km/h
2.2 mph
2 m/s
7.2 km/h
4.5 mph
5 m/s
18 km/h
11 mph
10 m/s
36 km/h
22 mph
20 m/s
72 km/h
45 mph
50 m/s
180 km/h
110 mph
100 m/s
360 km/h
220 mph
Slow walk Bicycle City car Aerobatics
10 cm
3.9 in
Laboratory
centrifuge
10 m/s²
1.0 g
40 m/s²
4.1 g
250 m/s²
25 g
1.0 km/s²
100 g
4.0 km/s²
410 g
25 km/s²
2500 g
100 km/s²
10000 g
20 cm
7.9 in
5.0 m/s²
0.51 g
20 m/s²
2.0 g
130 m/s²
13 g
500 m/s²
51 g
2.0 km/s²
200 g
13 km/s²
1300 g
50 km/s²
5100 g
50 cm
1.6 ft
2.0 m/s²
0.20 g
8.0 m/s²
0.82 g
50 m/s²
5.1 g
200 m/s²
20 g
800 m/s²
82 g
5.0 km/s²
510 g
20 km/s²
2000 g
1 m
3.3 ft
Playground
carousel
1.0 m/s²
0.10 g
4.0 m/s²
0.41 g
25 m/s²
2.5 g
100 m/s²
10 g
400 m/s²
41 g
2.5 km/s²
250 g
10 km/s²
1000 g
2 m
6.6 ft
500 mm/s²
0.051 g
2.0 m/s²
0.20 g
13 m/s²
1.3 g
50 m/s²
5.1 g
200 m/s²
20 g
1.3 km/s²
130 g
5.0 km/s²
510 g
5 m
16 ft
200 mm/s²
0.020 g
800 mm/s²
0.082 g
5.0 m/s²
0.51 g
20 m/s²
2.0 g
80 m/s²
8.2 g
500 m/s²
51 g
2.0 km/s²
200 g
10 m
33 ft
Roller-coaster
vertical loop
100 mm/s²
0.010 g
400 mm/s²
0.041 g
2.5 m/s²
0.25 g
10 m/s²
1.0 g
40 m/s²
4.1 g
250 m/s²
25 g
1.0 km/s²
100 g
20 m
66 ft
50 mm/s²
0.0051 g
200 mm/s²
0.020 g
1.3 m/s²
0.13 g
5.0 m/s²
0.51 g
20 m/s²
2 g
130 m/s²
13 g
500 m/s²
51 g
50 m
160 ft
20 mm/s²
0.0020 g
80 mm/s²
0.0082 g
500 mm/s²
0.051 g
2.0 m/s²
0.20 g
8.0 m/s²
0.82 g
50 m/s²
5.1 g
200 m/s²
20 g
100 m
330 ft
Freeway
on-ramp
10 mm/s²
0.0010 g
40 mm/s²
0.0041 g
250 mm/s²
0.025 g
1.0 m/s²
0.10 g
4.0 m/s²
0.41 g
25 m/s²
2.5 g
100 m/s²
10 g
200 m
660 ft
5.0 mm/s²
0.00051 g
20 mm/s²
0.0020 g
130 m/s²
0.013 g
500 mm/s²
0.051 g
2.0 m/s²
0.20 g
13 m/s²
1.3 g
50 m/s²
5.1 g
500 m
1600 ft
2.0 mm/s²
0.00020 g
8.0 mm/s²
0.00082 g
50 mm/s²
0.0051 g
200 mm/s²
0.020 g
800 mm/s²
0.082 g
5.0 m/s²
0.51 g
20 m/s²
2.0 g
1 km
3300 ft
Yüksek hızlı demiryolu1.0 mm/s²
0.00010 g
4.0 mm/s²
0.00041 g
25 mm/s²
0.0025 g
100 mm/s²
0.010 g
400 mm/s²
0.041 g
2.5 m/s²
0.25 g
10 m/s²
1.0 g

Düzensiz Dairesel Hareket

Düzensiz dairesel hareket dairesel bir yolda hareket eden bir nesnenin sahip olduğu değişken bir hızın olduğu her durumdur. Teğetsel ivme sıfırdan farklıdır; hız değişkendir.

Sıfırdan farklı bir teğetsel ivme olduğu için, kendi merkezcil gücüne (kütle ve radyal ivmeden oluşan) ek olarak, bir nesne üzerine etki eden güçler vardır. Bu güçler ağırlık, normal kuvvet ve sürtünme kuvvetini içerir.

Düzensiz dairesel harekette, normal kuvvet her zaman ağırlığın tersi yöne doğrulmaz. İşte düz bir şekilde hareket eden ve aniden düz bir yola geri atlayan bir nesne görüyorsunuz. Bu diyagram ağırlığın tersi yönden ziyade farklı yönlere doğrulan normal kuvveti gösteriyor. Normal kuvvet aslında ağırlık kuvvetini önlemek ve merkezcil kuvvete katkı sağlamaya yardım eden radyal ve teğet kuvvetlerin toplamıdır. Merkezcil kuvvete katkı sağlayan Normal kuvvetin yatay bileşenidir. Normal kuvvetin dikey bileşeni ise nesnenin ağırlığına karşı koyar.

Düzensiz dairesel harekette normal kuvvet ve ağırlık aynı yöne doğru olabilir. İki kuvvet de aşağıya doğrulabilir fakat nesne aşağıya düşmeden dairesel bir yolda kalacaktır. Öncelikle normal kuvvetin neden ilk olarak aşağıya doğrulacağını görelim. İlk diyagramda, nesnenin bir uçağın içinde oturan bir insan olduğunu varsayalım, iki güç de yalnızca nesne dairenin tepesine ulaştığında aşağıya yöneliyor. Hem ağırlık hem de merkezcil kuvvet dairenin tepesindeyken aşağıya yöneldiğinden, normal kuvvet de aşağıya yönelecektir. Mantıklı bir açıdan, uçakta seyahat eden bir kişi dairenin tepe noktasında tepetaklak olacaktır. O anda, kişinin koltuğu aslında kişi üzerine bastırır ve bu normal kuvvettir

Nesnenin yalnızca aşağıya doğru olan kuvvetlere maruz kaldığında aşağıya düşmeme nedeni basittir. Bir nesneyi fırlatıldıktan sonra havada tutanın ne olduğunu bir düşünün. Bir nesne havaya atıldığı anda, nesne üzerine etki eden aşağıya doğru tek kuvvet yerçekimi kuvvetidir. Bu bir nesne havaya atıldığında hemen yere düşeceği anlamına gelmez. Nesneyi havada tutan şey süratidir. Newton’un hareket yasalarının ilki bir nesnenin eylemsizliği onu hareketli tuttuğunu belirtir ve nesne havadayken bir sürati olduğundan o yönde hareket etmeyi sürdürmeye eğilim gösterir.

Uygulamalar

Düzensiz dairesel hareket ile ilgili çözüm uygulamaları kuvvet analizlerini içerir. Düzgün dairesel hareketle, bir dairede hareket eden nesne üzerine etki eden tek kuvvet merkezcil kuvvettir. Düzensiz dairesel harekette, sıfırdan farklı bir teğetsel ivmeden dolayı nesne üzerine etkiyen ek kuvvetler vardır. Ek kuvvetler olmasına rağmen, nesne üzerine etki eden bütün kuvvetlerin toplamı merkezcil kuvvete eşit olmak zorundadır.

Radyal ivme total kuvvet hesaplanırken kullanılır. Teğetsel ivme nesneyi bir dairesel yolda tutmaktan sorumlu olmadığı için hesaplamada kullanılmaz. Nesneyi dairede hareket halinde tutan tek ivme radyal ivmedir. Bütün kuvvetlerin toplamı merkezcil kuvvet olduğu için, merkezcil kuvveti serbest cisim diyagramına çizmek gerekli değildir ve genellikle önerilmez.

’yı kullanarak, cisme etki eden ve ’ye eşit kılan bütün kuvvetleri listelemek için serbest cisim diyagramları çizebiliriz. Daha sonra, bilinmeyenin ne olduğunu (bu bir kütle, sürat, eğrilme yarıçapı, sürtünme katsayısı, normal kuvvet vb. olabilir) çözebiliriz. Örneğin yukarıdaki bir yarım dairenin tepe noktasındaki nesneyi gösteren görsel . olarak ifade edilebilir.

Düzgün dairesel harekette, dairesel yoldaki bir nesnenin total ivmesi radyal ivmeye eşittir. Düzensiz dairesel harekette teğetsel ivme var olduğundan, bu geçerli olmuyor. Düzensiz dairesel harekette bir nesnenin total ivmesini bulmak için, radyal ve teğetsel ivmenin toplam vektörünü bulun.

Radyal ivme yine .’ye eşittir. Teğetsel ivme basit olarak verilen herhangi bir noktada süratin türevidir: . Bu ayrı radyal ve teğetsel ivmelerin karelerinin toplamı kökü, yalnızca dairesel hareket için doğrudur; bu durumda radyal ivme . olduğu için polar koordinatlarla bir uçak içindeki genel hareket için Coriolis terimi ’ye eklenmelidir.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Yörünge</span> bir gökcisminin bir diğerinin kütleçekimi etkisi altında izlediği yola yörünge adı verilir

Gök mekaniğinde yörünge veya yörünge hareketi, bir gezegenin yıldız etrafındaki veya bir doğal uydunun gezegen etrafındaki veya bir gezegen, doğal uydu, asteroit veya lagrange noktası gibi uzaydaki bir nesne veya konum etrafındaki yapay uydunun izlediği kavisli bir yoldur. Yörünge, düzenli olarak tekrar eden bir yolu tanımlamakla birlikte, tekrar etmeyen bir yolu da ifade edebilir. Gezegenler ve uydular Kepler'in gezegensel hareket yasalarında tanımlandığı gibi, kütle merkezi elips biçiminde izledikleri yolun odak noktasında olacak şekilde yaklaşık olarak eliptik yörüngeleri takip ederler.

<span class="mw-page-title-main">Düzgün dairesel hareket</span>

Düzgün dairesel hareket, sabit bir kuvvetin etkisinde, bir çember üzerinde süratin değişmediği harekettir.

<span class="mw-page-title-main">Öz empedans</span>

Öz direnç (Empedans), maddenin kimyasal özelliğinden dolayı direncinin artması ya da azalmasına neden olan her maddeye özgü ayırt edici bir özelliktir. Farklı maddelerin empedansları aynı olabilir ama öz dirençleri aynı olamaz. R= Lq/Q dur. (Rezistif Direnç= Uzunluk*öz direnç/kesit, Alternatif akım'a karşı koyan zorluk olarak adlandırılır. İçinde kondansatör ve endüktans gibi zamanla değişen değerlere sahip olan elemanlar olan devrelerde direnç yerine öz direnç kullanılmaktadır. Öz direnç gerilim ve akımın sadece görünür genliğini açıklamakla kalmaz, ayrıca görünür fazını da açıklar. DA devrelerinde öz direnç ile direnç arasında hiçbir fark yoktur. Direnç sıfır faz açısına sahip öz direnç olarak adlandırılabilir.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

Açısal İvme, açısal hızın birim zamandaki değişimidir. SI birim sistemindeki birimi: rad/s² dir ve genellikle Yunan harfi alfa ile gösterilir.

<span class="mw-page-title-main">İş (fizik)</span>

Fizikte, bir kuvvet bir cisim üzerine etki ettiğinde ve kuvvetin uygulama yönünde konum değişikliği olduğunda iş yaptığı söylenir. Örneğin, bir valizi yerden kaldırdığınızda, valiz üzerine yapılan iş kaldırıldığı yükseklik süresince ağırlığını kaldırmak için aldığı kuvvettir.

<span class="mw-page-title-main">Katı cisim dinamiği</span>

Katı-cisim dinamiği, dış kaynaklı kuvvetler karşısında hareket eden birbiri ile ilişkili sistemlerin analizini inceler. Her bir gövde için, cisimlerin katı olduğu ve bu nedenle uygulanan kuvvetler nedeni ile deforme olmadıkları, sistemi tanımlayan taşıma ve dönme parametrelerinin sayısını azaltarak analizi basitleştirmektedir.

<span class="mw-page-title-main">Tork</span> bir kuvvetin nesnenin ekseninde, dayanak noktasında ya da çevresinde dönme eğilimi

Tork, kuvvet momenti ya da dönme momenti, bir cismin bir eksen etrafındaki dönme, bükülme veya burulma eğilimini dönme ekseni merkezine indirgeyerek ölçen fiziksel büyüklüktür. Torkun büyüklüğü moment kolu uzunluğuna, uygulanan kuvvete ve moment kolu ile kuvvet vektörü arasındaki açıya bağlıdır.

<span class="mw-page-title-main">Dikeyhız</span> nesne hızının, nesne ile nokta arasındaki yarıçapı birleştiren yöne işaret eden bileşeni

Dikey hız, bir hedefin bir gözlemciye göre iki nokta arasındaki vektörel yer değiştirme miktarının değişim hızıdır. Hedef-gözlemci izafi hızının, iki noktayı birleştiren izafi yön veya görüş çizgisi üzerindeki vektörel izdüşümü olarak tanımlanır. Daha basitçe, bir hedefin bir gözlemciye göre, görüş çizgisi boyunca yaklaşma veya uzaklaşma hızıdır.

<span class="mw-page-title-main">Dairesel yörünge</span>

Astrodinamikte dışmerkezliği sıfıra eşit olan eliptik yörünge olarak özetlenebilecek dairesel yörünge, tanım olarak fizikte sabit eksen etrafında rotasyonun tipik bir örneğidir. Burada bahsedilen eksen, hareket düzlemine dik olarak kütle merkezlerinden geçen doğrudur.

Genlik, periyodik harekette maksimum düzey olarak tanımlanabilir. Genlik, bir dalganın tepesinden çukuruna kadar olan düşey uzaklığın yarısıdır. Genlik kavramı ışık, elektrik, radyo dalgaları gibi konuları da kapsayan fen bilimleri alanında kullanılır.

Açısal hız, bir objenin birim zamandaki açısal olarak yer değiştirme miktarına verilen isimdir. Açısal hız vektörel olup bir cismin bir eksen üzerindeki dönüş yönünü ve hızını verir. Açısal hızın SI birimi radyan/saniyedir, ancak başka birimlerde de ölçülebilir. Açısal hız genellikle omega sembolü ile gösterilir. Açısal hızın yönü genellikle dönüş düzlemine diktir ve sağ el kuralı ile bulunabilir.

<span class="mw-page-title-main">Basit harmonik hareket</span>

Basit harmonik hareket, geri çağırıcı kuvvet ile doğru orantılı olarak yer değiştiren periyodik bir hareket türüdür.

<span class="mw-page-title-main">Hız</span> vektörel bir fiziksel nicelik

Hız, bir nesnenin hareket yönü ile birlikte olan süratini ifade eder. Hız, cisimlerin hareketini tanımlayan bir klasik mekanik dalı olan kinematikte temel bir kavramdır.

<span class="mw-page-title-main">Merkezcil kuvvet</span>

Merkezcil kuvvet, dairesel hareket sırasında cismi yörüngede tutan kuvvettir. Merkezcil kuvvet, hız vektörünün büyüklüğünü değiştirmez ancak yönünü değiştirir. Bu yüzden bir merkezcil ivme oluşur.

Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.

Matematiksel fizikte, hareket denklemi, fiziksel sistemin davranışını, sistem hareketinin zamanı ve fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemi, matematiksel fonksiyonların kümesini "devinimsel değişkenler" cinsinden izah eder. Normal olarak konumlar, koordinat ve zaman kullanılır ama diğer değişkenler de kullanılabilir: momentum bileşenleri ve zaman gibi. En genel seçim genelleştirilmiş koordinatlardır ve bu koordinatlar fiziksel sistemin karakteristiğinin herhangi bir uygun değişkeni olabilirler. Klasik mekanikte fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte öklid uzayı, eğilmiş uzay ile tanımlanmıştır. Eğer sistemin dinamiği biliniyor ise denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.

<span class="mw-page-title-main">Kepler yörüngesi</span> üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklayan kavram

Gök mekaniği olarak, Kepler yörüngesi üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklar.. Kepler yörüngesi yalnızca nokta iki cismin nokta benzeri yerçekimsel çekimlerini dikkate alır, atmosfer sürüklemesi, güneş radyasyonu baskısı, dairesel olmayan cisim merkezi ve bunun gibi bir takım şeylerin diğer cisimlerle girdiği çekim ilişkileri nedeniyle ihmal eder. Böylece Kepler problemi olarak bilinen iki-cisim probleminin, özel durumlara bir çözüm olarak atfedilir. Klasik mekaniğin bir teorisi olarak, aynı zamanda genel görelilik etkilerini dikkate almaz. Kepler yörüngeleri çeşitli şekillerde altı yörünge unsurları içine parametrize edilebilir.

<span class="mw-page-title-main">Sabit bir eksen etrafında dönme</span> dönme hareketinin özel bir durumu

Sabit bir eksen etrafında dönme dönme hareketinin özel bir durumudur. Sabit eksen hipotez yönünü değiştirerek bir eksen olasılığını dışlar ve salınım devinim gibi olguları tarif edemez. Euler’in dönme teoremine göre, Aynı zamanda, sabit eksenler boyunca eş zamanlı rotasyon imkânsızdır. Eğer iki rotasyona aynı anda kuvvet uygulanırsa, rotasyonun yeni ekseni oluşur.

Teorik fzikte, Nordstrom kütleçekim kanunu genel göreliliğin bir öncülüdür. Açıkçası, Fin’li teorik fizikçi Gunnar Nordström tarafından 1912 de ve 1913 te önerilen iki ayrı teori vardır. Bunlardan ilki, hızla geçerliliğini yitirmiş, ancak ikinci, yerçekimi etkileri kavisli uzay-zaman geometrisi bakımından tamamen kabul eden. kütleçekim metrik teorisinin bilinen ilk örneği olmuştur. Nordstrom teorilerinin hiçbiri gözlem ve deney ile uyum içinde değildir. Bununla birlikte, ilkinin kısa sürede üzerindeki ilgiyi kaybetmesi, ikinciyi de etkilemiştir. İkinciden geriye kalan, kütleçekim kendine yeten relativistik teorisi. Genel görelilik ve kütleçekim teorileri için temel taşı niteliği görevi görmektedir. Bir örnek olarak, bu teori, pedagojik tartışmalar kapsamında özellikle yararlıdır.