İçeriğe atla

DNA polimeraz

DNA-yönlendirmeli DNA polimeraz
İnsan DNA polimeraz beta'nın DNA'ya bağlanan motifleri (helix-turn-helix ) (7ICG pdb dosyasından oluşturulmuştur)
Tanımlayıcılar
EC numarası2.7.7.7
CAS numarası 9012-90-2
Veritabanları
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGGKEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBj PDBe PDBsum
Gene Ontology AmiGO / EGO

DNA polimeraz, DNA replikasyonunu sağlayan bir enzimdir. Bu enzimler bir DNA ipliğini kalıp olarak kullanır, onu okuyup, onun boyunca deoksiribonükleotitlerin polimerizasyonunu katalizler. Yeni polimerleşmiş molekül kalıp ipliği tamamlayıcıdır ve kalıp ipliğin eski eşi ile aynı yapıya sahiptir.

DNA polimeraz bir holoenzim olarak sayılır çünkü doğru işlev verebilmek için bir magnezyum iyonuna gerek duyar. Magnezyum iyonunun yokluğunda ona apoenzim olarak değinilir.

DNA polimeraz tek iplikli bir DNA'ya bağlanarak DNA ikileşmesini başlatır. RNA polimerazdan farklı olarak, DNA polimeraz sentezlediği yeni ipliği sadece nükleotitlerden başlayarak uzatamaz, ancak mevcut bir DNA zincirini uzatabilir. Bu yüzden zincir sentezinin başı için yardımcı enzimlere gerek duyar. DNA polimerazların bazı türleri hatalı ekledikleri nükleotitleri fark edip onları tamir etmelerini sağlayan bir eksonükleaz yeteneğine sahiptir.

İşlev

prova okuma yetenekli DNA polimeraz.

DNA polimeraz yeni uzayan bir ipliğin sadece 3' ucuna serbest nükleotitler bağlayabilir. Bunun sonucu olarak yeni ipliğin uzaması 5'->3' yönünde olur. Bilinen DNA polimerazlar arasında yeni bir zinciri tamamen başlangıçtan oluşturma yeteneği olan yoktur. DNA polimeraz sadece mevcut bir 3'-OH grubuna bir nükleotit ekleyebilir ve dolayısıyla ilk nükleotidi ekleyebileceği bir başlatıcıya ("primer"e) gerek duyar. Primerler RNA ve DNA bazlarından oluşur, ilk iki baz RNA'dır ve primaz adlı başka bir enzim tarafından üretilirler. Helikaz denen bir enzim ise, DNA'nın ikili sarmalını ters yönde burarak gevşetir ve onu tek iplikli bir şekil almasını sağlar. Böylece DNA, yarı saklı ikileşmeye hazır hale gelir.

Hata tamiri bazı polimerazların bir özelliği olmakla beraber hepsinde görülmez. Bu süreç, yeni sentezlenen DNA'daki hataları düzeltir. Hatalı bir baz çifti fark edilince, DNA polimeraz yönünü değiştirip bir baz çifti geriye gider. Enzimin 3'->5' eksonükleaz aktivitesi hatalı bazları kesilip çıkartılmasını sağlar. Bazın çıkartılmasından sonra polimeraz doğru bazı uzayan zincire dahil eder ve ikileşme devam eder.

Türler arasında çeşitlilik

DNA polimerazların yapıları evrim zarfında korunmuştur, yani bir türden başka bir türe bu enzimler arasında pek az bir fark vardır. Korunmuş yapılar, hücre için önemli, değiştirilemez işlevlere işaret eder, dolayısıyla bunların devamının sürdürülmesi evrimsel bir avantaj sağlar.

Bazı virüsler ayrıca viral DNA'yı çeşitli mekanizmalarla ikileştirebilen özel DNA polimerazlar kodlar. Retrovirüsler ters transkriptaz adı verilen olağandışı bir polimeraz kodlar, bu RNA-bağımlı bir DNA polimerazdır. Bunlar DNA'yı polimerleştirmek için bir RNA kalıp kullanılır.

DNA polimeraz aileleri

Üç farklı DNA polimerazın üç boyutlu yapıları. E. coli DNA pol I (üstte solda), insan Pol β (üstte sağda) ve bakteriofaj rb69 DNA polimerazı (altta). Bunlar, sırasıyla, DNA polimeraz A, X ve B ailelerine aittir. Her polimeraz kısa bir DNA parçasına bağlı olarak gösterilmiştir: mor, kalıp iplik; yeşil, sentezlenen iplik.

DNA dizi benzerliklerine dayanarak DNA polimerazlar yedi farklı aileye bölünmüşlerdir: A, B, C, D, X, Y ve RT.

A ailesi

A ailesi polimerazlar hem ikileşme hem de tamir polimerazları içerir. Bu aileye ait ikileştirici üyeleri arasında çok çalışılmış olan T7 DNA polimeraz ve ayrıca ökaryotik mitokondrial DNA Polimeraz γ bulunur. Tamir polimerazları arasında E. coli DNA pol I, Thermus aquaticus pol I ve Bacillus stearothermophilus pol I bulunur. Bu tamir polimerazları kesip çıkarma (eksizyon) tamiri ve ikileşme çatalında gecikmeli iplik (İng. lagging strand) sentezi sırasında Okazaki parçalarının işlenmesi ile ilgilidir.

B ailesi

B ailesi polimerazlar başlıca ikileşmeli polimerazlar içerir; aralarında ökaryotik polimerazların baçlıcaları olan α (alfa), δ (delta), ε (epsilon) ve ayrıca DNA polimeraz ζ (zeta) bulunur. B familyası ayrıca bazı bakteri ve bakteriyofajlar tarafından kodlanmış DNA polimerazlar da içerir, bunların arasında en iyi tanımlanmış olanlar T4, Phi29 ve RB69 bakteriyofajlarına ait olanlardır. Bu enzimler hem öncü hem de gecikmeli zincir senteziyle ilişkilidirler. B ailesi DNA polimerazların en tanımlayıcı özelliği, ikileşme sırasındaki yüksek hatasızlık oranıdır. Bunların çoğunun güçlü bir 3'-5' eksonükleaz aktivitesi vardır (DNA polimeraz α ve ζ hariç, bunların prova okuma aktivitesi yoktur).

C ailesi

C ailesi polimerazlar en başlıca bakteri kromozom ikileştirme enzimleridir. E. coli 'nin DNA Polimeraz III alfa altbiriminin bilinen herhangi bir eksonükleaz aktivitesi yoktur. Bir diğer altbirim, epsilon, kromozom ikileşmesi için kullanılan 3'->5' eksonükleaz aktivitesine sahiptir.

D ailesi

D ailesi polimerazlar halen iyi tanımlanmış değllerdir. Tüm bilinen örnekleri Arkelerin Euryarchaeota altbölümünde bulunur, bunların ikileşme polimerazı olduğu düşünülmektedir.

X ailesi

X ailesi iyi bilinen ökaryotik polimeraz pol β (beta), ayrıca ökaryotik polimerazlar pol σ (sigma), pol λ (lambda), pol μ (mu) ve terminal deoksinükleotidil transferaz (TdT) içerir. Pol β, baz eksiyon tamiri için gereklidir, bu bazsız DNA bölgelerinin tamiri için gerekli bir tamir yoludur. Pol λ ve Pol μ, homolog olmayan uç birleştirme ile ilişkilidir, bu, çift zincirli DNA kırıklarını birleştirmek için bir mekanizmadır. TdT sadece lenf dokularında bulunur, immün çeşitlilik oluşturmaya yarayan V(D)J rekombinasyonu sırasında meydana gelen çift zincirli DNA kırıklarına nükleotitler ekler. Saccharomyces cerevisiae mayasında tek bir Pol X polimeraz bulunur, Pol4, bu homolog olmayan DNA uç birleştirmesinde görev alır.

Y ailesi

Y ailesi polimerazları, zarar görmemiş kalıpları kopyalarken hata oranlarının yüksek olması, ama zarar görmüş DNA'yı ikileştirebilme özellikleriyle diğer polimerazlardan farklılık gösterirler. Bu ailenin üyeleri dolayısıyla lezyon-aşırı sentez (İng. "translesion synthesis"; TLS) polimerazları olarak adlandırılırlar. Lezyona bağlı olarak zarar görmüş bölgeyi ya hatasız veya hataya eğilimli şekilde geçebilirler. Kseroderma pigmentosum hastalığının XPV çeşidi hastalarda Pol η (eta) kodlayan gende mutasyonlar bulunur, bu polimeraz normalde morötesi lezyonlarda hatasız çalışır. XPV hastalarında, bu polimeraz yerine hataya eğilimli alternatif polimerazlar, örneğin Polζ (zeta) (polimeraz ζ bir B ailesi polimerazıdır) çalışır, bunlar da bu hastalarda kansere yol açan hatalara neden olur. İnsanlarda bu ailenin diğer üyeleri Pol ι (iota), Pol κ (kappa) ve Rev1 (terminal deoksisitidil transferaz)'dir. E.coli 'de iki TLS polimeraz, Pol IV (DINB) ve PolV (UmuD'2C), vardır.

RT ailesi

Ters transkriptaz ailesi hem retrovirüslerden hem de ökaryotik polimerazlardan örnekler içerir. Ökaryotik polimerazlar telomerazlardan ibarettir. Bu polimerazlar bir RNA kalıptan DNA zinciri sentezlerler.

Canlı türlerine göre gruplandırma

Prokaryotik DNA polimerazlar

Bakterilerde 5 DNA polimerazın varlığı bilinmektedir:

  • Pol I: DNA tamirinde görev alır. Hem 5'->3' polimeraz aktivitesi hem de 5'->3' eksonükleaz activitesi vardır (RNA primerleri çıkarmak için). DNA'ya bağlanması ile ondan ayrışması arasında ortalama 20 nükleotit ekler, yani ilerleyiciliği (İng. processivity) azdır. ayrıca 3'->5' eksonükleaz aktivitesi vardır.
  • Pol II: Zarar görmüş DNA'nın ikileşmesinde görev alır; 3'->5' eksonükleaz aktivitesi vardır.
  • Pol III: Bakterilerin esas polimerazıdır (DNA ikileşmesinde DNA'yı uzatır); 3'->5' eksonükleaz prova okuma yeteneği vardır.
  • Pol IV: Y ailesi üyesi bir DNA polimerazdır
  • Pol V: Y ailesi uyesidir; DNA'nın zarar görmüş bölgelerini aşmaya yarar.

Arke DNA polimerazları

Arkelerde iki tip DNA polimeraz vardır.

  • Polimeraz B: B tipi polimerazların hepsinin 3'->5' polimeraz ve 5'->3' eksonükleaz aktivitesi vardır. Tek alt birimden oluşurlar.
  • Polimeraz D: Euryarchaeota'larda görülen bu DNA polimerazın iki alt birimi vardır. Büyük altbirim DP2 polimeraz aktivitesine sahiptir ama bunun çalışabilmesi için küçük DP1 biriminin de bulunmsı gerekir.

Ökaryotik DNA polimerazlar

Ökaryotların en az 15 DNA polimerazı vardır:[1]

  • Pol α (eşanlamlı adları DNA primaz, RNA polimeraz): primaz olarak etkir (bir RNA primer sentezler) ve sonra bu primeri DNA nükleotitleri ile uzatır. Yaklaşık 20 nükleotit sonra uzama reaksiyonu Pol δ (gecikmeli iplikte) veya ε (öncü iplikte) uzatma işlemini devralır.[2]
  • Pol β: DNA tamirinde görev alır, baz eksizyon tamiri ve boşluk doldurması yapar.
  • Pol γ: Mitokondrial DNA'yı ikileştirir ve tamir eder; 3'->5' eksonükleaz aktivitesiyle prova okuması yapar.
  • Pol δ: Yüksek derecede ilerleyicidir ve 3'->5' eksonükleaz aktivitesiyle prova okuması yapar. İkileşme çatalındaki gecikmeli iplik sentezinden sorumlu esas polimeraz olduğu düşünülmektedir ama bu konu hâlâ tartışmalıdır.[3]
  • Pol ε: Bu da çok ilerleyici bir enzimdir ve 3'->5' eksonükleaz aktivitesine sahiptir. Pol δ ile yakın akrabalığı vardır ve öncü iplik (İng. leading strand) sentezinden sorumlu esas polimeraz olduğu düşünülmektedir[4] ancak bunun rolü hakkında da tartışma sürmektedir.[3]
  • η, ι, κ ve Rev1, Y ailesi DNA polimerazlarıdır. Bu polimerazlar DNA zarar bölgelerinin atlanmasında işlev görürler.[5]
  • Başka ökaryotik polimerazlar da bilinmektedir ama bunlar iyi tanımlanmamıştır: θ, λ, φ, σ ve μ. Başka polimerazlar daha vardır ama bunlar isimlendirilmesi halen yerleşmemiştir.

Bu polimerazların hiçbiri primerleri çıkaramaz (5'->3' eksonükleaz aktivitesi yoktur); bu fonksiyon başka enzimler tarafından sağlanır. Sadece uzamadan sorumlu polimerazların (γ, δ ve ε) prova okuma yeteneği (3'->5' eksonükleaz aktivitesi) vardır.

Biyoteknolojide önemi

Laboratuvarda DNA polimerazlar çoğu zaman polimeraz zincir reaksiyonu için kullanılırlar. Bu amaç için kullanılan polimerazların yüksek ısıya dayanıklı olması ve hata düzeltme (prova okuma) fonksiyonu olması gereklidir, bu yüzden yüksek ısıda yaşayabilen canlıların (örneğin Thermus aquaticus) DNA polimerazı veya onun yapay türevleri kullanılır. DNA polimeraz ayrıca DNA dizilemesinde de kullanılır.

Ayrıca bakınız

Kaynakça

  1. ^ I. Hubscher, U.; Maga, G.; Spadari, S. (2002). "Eukaryotic DNA polymerases". Annual Review of Biochemistry. Cilt 71. ss. 133-63. doi:10.1146/annurev.biochem.71.090501.150041. PMID 12045093. 
  2. ^ J. M. Berg; J. L. Tymoczko; L. Stryer "Biochemie", Springer, Heidelberg/Berlin 2003
  3. ^ a b Scott D McCulloch; Thomas A Kunkel (Ocak 2008). "The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases". Cell Research. Cilt 18. ss. 148-161. doi:10.1038/cr.2008.4. PMID 18166979. 
  4. ^ Pursell, Z.F.; ve diğerleri. (2007). "Yeast DNA Polymerase ε Participates in Leading-Strand DNA Replication". Science. Cilt 317. ss. 127-130. doi:10.1126/science.1144067. PMID 17615360. 
  5. ^ I. Prakash, S.; Johnson, R. E.; Prakash, L. (2005). "Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function". Annual Review of Biochemistry. Cilt 74. ss. 317-53. doi:10.1146/annurev.biochem.74.082803.133250. PMID 15952890. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">DNA replikasyonu</span> Biyolojik süreç

DNA replikasyonu veya DNA ikileşmesi, tüm organizmalarda meydana gelen ve DNA kopyalayarak kalıtımın temelini oluşturan biyolojik bir süreçtir. Süreç, bir adet çift iplikli DNA molekülüyle başlar ve iki özdeş DNA'nın oluşumuyla son bulur. Orijinal çift iplikli DNA'nın her ipliği, tamamlayıcı ipliğin üretiminde kalıp görevi görür. Hücresel proofreading ve hata kontrol mekanizmaları replikasyonun neredeyse hatasız gerçekleşmesini sağlar.

<span class="mw-page-title-main">Protein biyosentezi</span>

Protein biyosentezi, hücrenin protein sentezlenmesi için gereken bir biyokimyasal süreçtir. Bu terim bazen sadece protein translasyonu anlamında kullanılsa da transkripsiyon ile başlayıp translasyonla biten çok aşamalı bir süreçtir. Prokaryotlarda ve ökaryotlarda ribozom yapısı ve yardımcı proteinler bakımından farklılık göstermesine karşın, temel mekanizma korunmuştur.

<span class="mw-page-title-main">Nükleik asit</span> bilinen tüm yaşam için gerekli olan büyük biyomoleküller sınıfı

Nükleik asitler, bütün canlı hücrelerde ve virüslerde bulunan, nükleotid birimlerden oluşmuş polimerlerdir. En yaygın nükleik asitler deoksiribonükleik asit (DNA) ve ribonükleik asit (RNA)'dır. İnsan kromozomlarını oluşturan DNA milyonlarca nükleotitten oluşur. Nükleik asitlerin başlıca işlevi genetik bilgi aktarımını sağlamaktır.

<span class="mw-page-title-main">Telomeraz</span>

Telomeraz telomerleri sentezleyen ve koruyan bir ters transkriptaz enzim.

<span class="mw-page-title-main">Transkripsiyon (genetik)</span> bir DNA parçasının RNAya kopyalanması süreci

Transkripsiyon, yazılma veya yazılım, DNA'yı oluşturan nükleotit dizisinin RNA polimeraz enzimi tarafından bir RNA dizisi olarak kopyalanması sürecidir. Başka bir deyişle, DNA'dan RNA'ya genetik bilginin aktarımıdır. Protein kodlayan DNA durumunda, transkripsiyon, DNA'da bulunan genetik bilginin bir protein veya peptit dizisine çevirisinin ilk aşamasıdır. RNA'ya yazılan bir DNA parçasına "transkripsiyon birimi" denir. Transkripsiyonda hata kontrol mekanizmaları vardır, ama bunlar DNA çoğalmasındakinden daha az sayıda ve etkindirler; dolayısıyla transkripsiyon DNA çoğalması kadar aslına sadık değildir.

<span class="mw-page-title-main">DNA onarımı</span> Hücresel mekanizma

DNA onarımı, DNA moleküllerindeki hataları onarım mekanizmalarını tanımlamaktadır. İnsan hücrelerinde metabolik aktiviteler ve çevresel faktörler sonucu günde 1 milyon hücrenin zarar görmesi olasıdır. Bu etkenler, DNA'nın yapısını ve dahası diğer nesillere aktarılan genetik bilgiyi değiştirebilirler. Bu değişimler yararlı olabileceği gibi, ölümcül sonuçlara neden olabilecek kadar da zararlı olabilir. Bu yüzden, bütün canlı hücreleri, evrim süreçleri boyunca nesillere değişmeden aktarılması gereken DNA molekülünü koruma mekanizmaları geliştirmişlerdir.

RNA polimerazlar, bir DNA veya RNA molekülündeki bilgiyi RNA molekülü olarak kopyalayan bir enzimler ailesidir. Bir gende yer alan bilginin RNA molekülü olarak kopyalanma işlemi transkripsiyon olarak adlandırılır. Hücrelerde RNAP genlerin RNA zincirleri halinde okunmasını sağlar. RNA polimeraz enzimleri, tüm canlılarda ve çoğu virüste bulunur. Kimyasal bir deyişle, RNAP, bir nükleotidil transferaz enzimidir, bir RNA molekülünün üç ucunda ribonükleotitlerin polimerleşmesini sağlar.

<span class="mw-page-title-main">Replikasyon çatalı</span>

İkileşme çatalı ya da Replikasyon çatalı replikasyon bölgesinde bulunan "Y" şeklindeki kromozom bölgesidir.

<span class="mw-page-title-main">Kesintili zincir</span>

Kesintili zincir, döşeme iplik ya da Lagging strand, DNA ikileşmesi sırasında birçok başlangıç noktasına gerek duyan ve Okazaki parçalarının oluştuğu zincirdir.

<span class="mw-page-title-main">Kesintisiz zincir</span>

Kesintisiz zincir, öncü iplik ya da Leading strand DNA zincirinde ikileşme çatalı açıldıkça, kesintili zincirin karşısında yer alan zincirdir.

<span class="mw-page-title-main">Prokaryotlarda DNA replikasyonu</span>

Prokaryotik hücrelerin DNA ikileşmesinde, ikili sarmal açılır ve sentezin başladığı yer olan ikileşme çatalı oluşur. Proteinler açılan sarmalı kararlı kılar ve ikileşme çatalının önünde oluşan sarılma gerilimini hafifletirler. Sentez, kalıp boyunca belirli bölgelerden RNA Primazın, DNA Polimeraz III'ün polimerizasyonu başlatabileceği serbest 3'-OH ucunu sağlayan kısa bir RNA parçasını sentezlemesiyle başlar. İkili sarmalın antiparalel yapısından dolayı polimeraz III, kesintili zincirde 5'-3' yönünde sürekli DNA sentezi yapar. Çatalın solunda DNA sentezi 5'-3' yönünde kesintisiz olarak devam eder. Kesintili zincir denen karşı zincirde kısa Okazaki parçaları sentezlenir ve bu parçalar daha sonra DNA ligaz ile birleştirilir. DNA Polimeraz I, RNA primerini uzaklaştırır ve yerine DNA sentezler, ortaya çıkan polinükleotidler DNA ligaz ile birleştirilir. Böylece sentezi tamamlanan iki yeni çift dallı DNA molekülü birbirinden ayrılr ve biri atasal hücrede kalırken diğeri oğul hücreye gider.

<span class="mw-page-title-main">Ökaryotlarda DNA replikasyonu</span>

Ökaryotlarda DNA ikileşmesi, oldukça karmaşık bir işlem olup, DNA sentezindeki bazı faktörlerin nasıl işlediği hala tam olarak çözümlenememiştir.

<span class="mw-page-title-main">Doğrultu (moleküler biyoloji)</span>

Moleküler biyolojide doğrultu, bir nükleik asit ipliğini oluşturan nükleotitlerin uçuca eklenme yönüyle ilişkildir. Kimyasal adlandırma konvansiyonu gereği, bir nükleotit şeker halkasındaki karbon atomları 1', 2', 3', 4' ve 5' olarak adlandırılır. Nükleik asitlerin doğada sentezlenmeleri sırasında büyüyen zincirin bir ucundaki şeker grubunun serbest bir 3' hidroksil (-OH) grubu vardır, öbür ucundaki şekerin ise serbest bir 5'-OH grubu vardır. Bu iki uca, sırasıyla 3' ve 5' uçları denir. Nükleik asidin sentezi sırasında polimeraz enzimi 3'-OH grubuna bir fosfodiester bağı ile yeni bir nükleotit bağlar. Konvansiyon olarak bir iplikli DNA ve RNA dizileri yazılırken bazların kısaltmaları 5'-3' doğrultusunda yazılır.

Bir polimeraz, merkezî işlevi RNA ve DNA gibi nükleik asit polimerleri ile ilgili olan bir enzimdir. Bir polimerazın esas fonksiyonu, mevcut bir DNA veya RNA kalıbı kullanarak, ikileşme veya transkripsiyon süreci içinde, yeni bir DNA veya RNA'nın polimerizasyonudur. Bu enzimler, bir grup başka enzim veya protein eşliğinde, çözeltide bulunan nükleotitleri alırlar ve baz eşleşme etkileşimlerinden yararlanarak, bir polinükleotit iplikçiğin karşısında yeni bir polinükleotit iplikçiğinin sentezini katalizler.

<span class="mw-page-title-main">Nükleaz</span>

Nükleaz, nükleik asitleri kısmen veya tamamen parçalayan bir enzim tipidir. Bu enzimler gerek sindirim sisteminde, gerek de hücre içinde, örneğin hata tamiri, gen regülasyonu, viral savunma gibi önemli işlevlerin gerçekleşmesinde rol oynarlar. Nükleazlar, tiplerine bağlı olarak, DNA ve RNA zincirlerini çeşitli biçimlerde kesebilirler. Gen mühendisliğinde farklı nükleazlar DNA moleküllerinin arzu edilen biçime sokulmasında, ayrıca DNA ve RNA moleküllerinin yapılarının anlaşılmasında birer araç olarak kullanılır.

<span class="mw-page-title-main">Ters transkriptaz</span> RNA şablonundan DNA üreten bir enzim

Biyokimyada bir ters transkriptaz veya RNA'ya bağımlı DNA polimeraz, tek iplikli bir RNA molekülü okuyup tek iplikli DNA üreten bir DNA polimeraz enzimidir. Bu enzim, ayrıca, RNA tek iplikli cDNA şeklinde okunduktan sonra çift iplikli DNA oluşmasında da görev alır. Normal transkripsiyon DNA'dan RNA sentezidir; dolayısıyla ters transkripsiyon bu sürecin tersidir.

<span class="mw-page-title-main">DNA kıskacı</span>

DNA kıskacı, kayar kıskaç olarak da bilinir, DNA ikileşmesinde ilerleyicilik-sağlayıcı bir faktör olarak görev yapan bir protein, ayrıca bu proteinde bulunan bir katlanma yapısıdır. DNA polimeraz III holoenziminin önemli bir parçası olarak, kıskaç protein DNA polimeraza bağlanır ve enzimin DNA'nın kalıp ipliğinden ayrışmasını engeller. DNA sentez reaksiyonunun hız sınırlayıcı adımı polimerazın DNA kalıbına bağlanması olduğu için, kayar kıskacın var olması, her birleşme olayı için polimerazın uzayan ipliğe eklediği nükleotit sayısını dramatik olarak artırır. Bunun nedeni, kıskaçla polimeraz arasındaki protein-protein etkileşimlerinin daha kuvetli ve daha spesifik olmasıdır, polimeraz-DNA iplik etkileşimine kıyasla. DNA kıskacının varlığı DNA sentez hızını 1000 katı hızlandırır, süreçlenmesiz polimeraza kıyasla.

Endonükleazlar bir polinükleotit zincirindeki fosfodiester bağını kesen enzimlerdir. Buna karşın eksonükleazlar polinükleotit zincirinin sadece en ucundaki fosfodiester bağını keser. Doğada endonükleazlar çeşitli hücresel işlevlere sahiptir. Bu enzimlerin bazıları moleküler biyoloji laboratuvarlarında birer araç olarak da kullanılır.

<span class="mw-page-title-main">Eksonükleaz</span>

Eksonükleaz bir nükleik asit zincirinin ucundan nükleotitleri teker teker kesen enzimdir. Bu zincirlerin 3' veya 5' uçlarındaki fosfodiester bağlarını kıran bir hidroliz tepkimesi olur, bu yüzden bu enzimler fosfoesteraz olarak tanımlanabilirler. Buna karşın, bir diğer fosfoesteraz tipi olan endonükleazlar bir polinükleotit zincirlerinin ortasındaki fosfodiester bağlarını keser.

Deaminasyon bir molekülden bir amino grubunun çıkarılması. Bu reaksiyonu katalizleyen enzimler deaminaz olarak adlandırılır.