İçeriğe atla

Dördey analizi

Matematikte dördey analizi ya da kuaternion analizi dördey değerli fonksiyonları inceleyen bir matematik alanıdır.[1] Matematikte başka bir isim olarak dördey değerli fonksiyonların teorisi olarak da adlandırılabilir.

Dördeyler Sir William Rowan Hamilton tarafından keşfedilmiştir.

Dördey değerli fonksiyonlar

Dördey değerli fonksiyon bağımsız değişkenin ve bağımlı değişkenin her ikisinin de dördey olduğu bir fonksiyondur. Tam olarak, dördey değerli bir fonksiyon tanım kümesinin dördey düzleminin altkümesi olduğu ve yine görüntü kümesinin dördey düzleminin altkümesi olduğu fonksiyondur. Herhangi bir dördey değerli fonksiyonda hem bağımsız değişken hem de bağımlı değişken gerçel ve 3 sanal kısımlara ayrılabilir:

 ve gerçel değerli fonksiyonlar olmak üzere, ifadesi

olarak yazılabilir. Başka bir deyişle, fonksiyonun bileşenleri olan  4 gerçel değişkenin, gerçel değerli fonksiyonları olarak yorumlanabilir.

Dördey analizin basit kavramları çoğunlukla karmaşık analizin üstel, logaritma ve trigonometrik fonksiyonlar gibi elementer fonksiyonlarının dördey bölgelere genişletilmesiyle elde edilir.

Kısmi Türevler ve Cauchy-Riemann denklemlerin genelleştirilmesi

Karmaşık değerli bir fonksiyonun 2 fonksiyonun bileşimi gibi düşünüldüğü karmaşık analize benzer şekilde, dördey analizinde de bir dördey değerli fonksiyon 4 fonksiyonun bileşimi şeklinde yazılabilir:

Artık bu dört fonksiyonun kısmi türevleri alınabilir:

Örneğin fonksiyonunun kısmi türevleri şöyledir:

Buradaki düzlemleri temsil eden işlemcilerdir. Örneğin "1" işlemcisi reel düzlemi temsil eder. Diğer i,j ve k işlemcileri ise sanal düzlemleri temsil eder.[] Aslında bu fonksiyonun türevi 4'tür. Yani aslında sonuç şudur:

Buradan yola çıkarak Cauchy-Riemann denklemleri dördeylere genelleştirilir:

Ve bu türün 3 farklı formülasyonu vardır. Bunlar:

,

,

Örneğin fonksiyonu olsun.

Kısmi türevlerinin bazıları şunlardır:

= = =

Diğerleri burada gösterilmemiştir, ancak aynı yöntemle elde edilebilir.

Türevin Limit Tanımı

Türevin limit tanımı klasik tek değişkenli kalkülüsteki türev tanımıyla aynıdır:

için,

Dördey eşleniği

karmaşık sayısını 2 boyutlu karmaşık sayı olarak düşünmek yanlış olmaz. O halde dördeyler de "4 boyutlu karmaşık sayıdır" denebilir. Dördeyler 2 boyutlu karmaşık sayıların 2 sanal düzlemin daha eklenmesiyle genelleştirilmiş halidir.[1] n boyutlu denilmesinin sebebi karmaşık sayıların vektör gibi davranmasıdır.

Aynı şekilde 2 boyutlu karmaşık sayının eşleniği varsa dördeylerin de olmalıdır.

dördeyinin eşleniği, 'dir.[]

Bazı önemli uygulamaları

  • Riemann geometrisi
  • Genel görelilik (özellikle kütlelerin uzay-zamanda oluşturduğu dalgalar için)

Kaynakça

  1. ^ a b Khaled Abdel-Khalek. "Quaternion analysis" (PDF). 22 Ocak 2020 tarihinde kaynağından arşivlendi (PDF). 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Türev alma kuralları</span> Vikimedya liste maddesi

Türev, matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıda temel türev alma kuralları ve bazı fonksiyonların türev kuralları yer almaktadır.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Karmaşık analiz</span>

Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">Harmonik fonksiyon</span>

Matematiğin matematiksel fizik alanında ve rassal süreçler teorisinde bir harmonik fonksiyon, Rn'nin U gibi açık bir kümesi üzerinde f : UR şeklinde tanımlı, Laplace denklemini, yani

<span class="mw-page-title-main">Cauchy integral teoremi</span> Matematiksel analiz ile ilgili bir teorem

Matematiğin bir dalı olan karmaşık analizde, Augustin Louis Cauchy'nin ismine atfedilen Cauchy integral teoremi, karmaşık düzlemdeki holomorf fonksiyonların çizgi integralleri hakkında önemli bir teoremdir.

Matematiğin bir dalı olan karmaşık analizde Augustin Louis Cauchy ve Bernhard Riemann'a atfen Cauchy-Riemann denklemleri olarak adlandıran denklemler, türevlenebilir bir fonksiyonun açık bir kümede holomorf fonksiyon olması için gerekli ve yeterli şartları sağlayan kısmi diferansiyel denklemlerdir. Bu denklemler sistemi ilk defa Jean le Rond d'Alembert'in 1752 yılındaki çalışmasında ortaya çıkmıştır. Daha sonra, 1777 yılındaki çalışmasıyla Leonhard Euler bu sistemi analitik fonksiyonlarla ilişkilendirmiştir. Cauchy ise bu sistemi 1814'teki çalışmasındaki fonksiyonlar teorisinde kullanmıştır. Riemann'ın fonksiyonlar teorisi üzerine olan doktora tezinin tarihi ise 1851'dir.

<span class="mw-page-title-main">Açıkorur gönderim</span>

Matematikte açıkorur gönderim ya da açıkorur dönüşüm tanımlı olduğu kümenin her noktasında yerel olarak açıları koruyan bir fonksiyona verilen addır. Bu tanımı haliyle, açıkorur gönderimlerin her zaman uzunlukları koruması ya da yönleri koruması beklenmez.

<span class="mw-page-title-main">Çizgi integrali</span>

Matematikte bir çizgi integrali, integrali alınan fonksiyonun bir eğri boyunca değerlendirildiği integraldir. Çeşitli farklı çizgi integralleri kullanılmaktadır. Kapalı eğrinin kullanıldığı durumlarda integrale kontür integrali denildiği de olmaktadır.

<span class="mw-page-title-main">Beta fonksiyonu</span>

Matematik'te, beta fonksiyonu, Euler integrali'nin ilk türüdür,

<span class="mw-page-title-main">Akım fonksiyonu</span>

Akım Fonksiyonu, eksen simetrisi ile üç boyutta olduğu kadar iki boyutta sıkıştırılamaz akışlar için tanımlanır. Akış hızı bileşenleri, skaler akış fonksiyonunun türevleri olarak ifade edilebilir. Akım fonksiyonu, kararlı akıştaki partiküllerin yörüngelerini gösteren akım çizgileri, çıkış çizgileri ve yörüngeyi çizmek için kullanılabilir. İki boyutlu Lagrange akım fonksiyonu, 1781'de Joseph Louis Lagrange tarafından tanıtıldı. Stokes akım fonksiyonu, eksenel simetrik üç boyutlu akış içindir ve adını George Gabriel Stokes'tan almıştır.

<span class="mw-page-title-main">Gradyan</span>

Bir skaler alanın yön türevi (gradyan) artımın en çok olduğu yere doğru yönelmiş bir vektör alanını verir ve büyüklüğü değişimin en büyük değerine eşittir.

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

<span class="mw-page-title-main">Lagrange mekaniği</span> Klasik mekaniğin yeniden formüle edilmesi

Lagrange mekaniği, klasik mekaniğin yeniden formüle edilmesidir. İtalyan-Fransız matematikçi ve astronom Joseph-Louis Lagrange tarafından 1788’de geliştirilmiştir.

<span class="mw-page-title-main">Bidördey</span>

Soyut cebirde, bidördeyler sayılarıdır. Klasik dördeylere benzese de sayıları reel sayılar değil karmaşık sayılar kümesinin elemanlarıdır. Bir başka deyişle, dördey grubu elemanları olan elemanlarının katsayıları reel sayılar kümesinin elemanları değil karmaşık sayılar kümesinin elemanlarıdır.

Holomorf fonksiyonlar karmaşık analizin temel çalışma araçlarından biridir. Bu fonksiyonlar karmaşık düzlemin yani C'nin açık bir altkümesinde tanımlı, bu altkümedeki her noktada karmaşık anlamda türevli ve aldığı değerler yine C içinde olan fonksiyonlardır.

Matematikte, karmaşık koordinat uzayı de ya da bu uzayın altkümeleri üzerinde tanımlı ve karmaşık değer alan fonksiyonların teorisine; yani, birden fazla karmaşık değişkenli fonksiyonların teorisine çok değişkenli karmaşık analiz denir.