İçeriğe atla

Dördey

William Rowan Hamilton

Matematikte, dördeyler (ya da kvaterniyon, kuaternion, dördübir), karmaşık sayıları bir gerçel, üç sanal boyuta genişleten sayı sistemidir. İlk defa İrlandalı matematikçi Sir William Rowan Hamilton tarafından 1843 yılında tanımlanmış ve 3 boyutlu uzaydaki matematiğe uygulanmışlardır. Kuaterniyonlar değişme özelliğine (ab = ba) sahip değildir. Her ne kadar pek çok uygulamada vektörler ve matrisler dördeylerin yerini almışsa da, kuramsal ve uygulamalı matematikte hala kullanılmaktadırlar. Başlıca kullanım alanı, 3 boyutlu uzayda dönme hareketinin hesaplanmasıdır.

Dördey cebiri genellikle H (Hamilton) ile gösterilir. Clifford cebiri sınıflandırması C0,2(R) = C03,0(R) olarak da gösterilirler. H cebirinin analizde önemli bir yeri vardır. Çünkü, Frobenius teoremi'ne göre, gerçel sayılar cismini althalka olarak içeren sonlu-boyutlu dört bölüm cebirinden bir tanesidir (diğerleri gerçel sayılar, karmaşık sayılar ve sekizeyler (octonions)).

Tanım

Dördeyler bir halka olarak tanımlanır. Kümesi:

.

olarak verilir. Burada kullanılan toplama şu şekilde tanımlıdır:

Çarpma ise

ifadesinin dağıtma kuralı kullanılarak açılmasıyla ve aşağıdaki bağıntılar yardımıyla tanımlanır.

Her dördey tektir ve temel dördeylerin, yani 1, i, j ve k nin gerçel doğrusal birleşimidir.

Dördeyler halkası, çarpma işleminin değişmeli olmaması yüzünden bir cisim değildir. Bir bölüm halkasıdır.

Aynı zamanda, dördeyler, gerçel sayılar üzerinde bir bölüm cebiri oluşturur. Gerçel sayılar ve karmaşık sayılarla birlikte, gerçelleri içeren birleşmeli üç bölüm cebirinden biridir.

Taban ögelerinin çarpımı

denklikler

,

burada i, j ve k H nın taban ögeleridir,i, j ve k nın tüm olası çarpanlarını belirtir .

örneğin −1 = ijk nın sağ çarpanlarının her ikisi de k ile verilir

Diğer tüm olası çarpanlar benzer yöntemlerle belirlenebilir

olan satır çarpanı sol faktörü teşkil eder ve bir tablo olarak ifade edilebilir, bu yazının üstünde gösterildiği gibi kendilerinin sütunlari sağ faktörü teşkil eder.

Hamilton çarpımı

iki a1 + b1i + c1j + d1k elementler için ve a2 + b2i + c2j + d2k, burada çarpıma, Hamilton çarpımı (a1 + b1i + c1j + d1k) (a2 + b2i + c2j + d2k) denir, taban ögeler ve dağılımsal kanunun çarpımları ile tanımlanıyor.Dağılım kanunu onu çarpımın açılımı için olası yapar böylece bu taban ögelerin çarpımlarının bir toplamıdır. Bu aşağıdaki bağıntılarla veriliyor:

Şimdi taban elemanları kullanılarak elde etmek için yukarıda verilen kuralları çoğaltılabilir:[1]

Sıralı liste formu

Hnın 1, i, j, k tabanları kullanılıyor dört katının bir kümesi olarak H yazmak için mümkün kılar:

ise taban ögeleri:

ve toplam ve çarpım için formüller:

Dördey değişkenlerinin bir fonksiyonu

bir karmaşık analizin fonksiyonları gibi, bir dördey değişkenin fonksiyonları kullanışlı fizik modelleri önerir.Örneğin, Maxwell tarafından tanıtılan orijinal elektrik ve manyetik alanlar bir dördey değişkenin fonksiyonları idi.

Üstel, logaritma ve kuvvet

bir dördey veriliyor,

q = a + bi + cj + dk = a + v,

üstel

olarak hesaplanıyor ve

.[2]

bir dördeyin kutupsal çözülümünü aşağıdaki gibi yazabiliriz

burada açı θ ve birim vektör ile tanımlanıyor:

ve

Herhangi birim dördey .olan kutupsal biçim içinde ifade edilebilir

bir keyfi (gerçek) üstel için bir yükselen dördeyin kuvveti ile veriliyor:

Ayrıca bakınız

  • 3-küre
  • Birleşmeli cebir
  • Bikuaterniyon
  • Clifford cebiri
  • Karmaşık sayı
  • Kuaterniyonlar ve Euler açıları arasındaki dönüşüm
  • Bölme cebiri
  • Dual Dördey
  • Euler açıları
  • Dış cebir
  • Geometrik cebir
  • Hurwitz Dördey
  • Hurwitz Dördey düzeni
  • Hiperbolik Dördey
  • hiperkarmaşık sayı
  • Lénárt küresi
  • Oktonyon
  • Pauli matrisleri
  • Kuaterniyon grubu
  • Kuaterniyon değişkeni
  • Kuaterniyonik matris
  • Kuaterniyonlar ve mekansal dönme
  • Dönme operatörü (vektör uzayı)
  • 4-boyutlu Öklid uzayında dönmeler
  • Slerp
  • Bölünmüş-Dördey
  • Teserakt

Notlar

  1. ^ Hazewinkel (2004), ss. 12.
  2. ^ "Lce.hut.fi" (PDF). 26 Eylül 2013 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 30 Temmuz 2014. 

Dış makaleler ve kaynaklar

Kitaplar ve yayınlar

  • Hamilton, William Rowan. On quaternions, or on a new system of imaginaries in algebra. Philosophical Magazine. Vol. 25, n 3. p. 489–495. 1844.
  • Hamilton, William Rowan (1853), "Lectures on Quaternions 11 Mayıs 2006 tarihinde Wayback Machine sitesinde arşivlendi.". Royal Irish Academy.
  • Hamilton (1866) Elements of Quaternions 12 Temmuz 2014 tarihinde Wayback Machine sitesinde arşivlendi. University of Dublin Press. Edited by William Edwin Hamilton, son of the deceased author.
  • Hamilton (1899) Elements of Quaternions volume I, (1901) volume II. Edited by Charles Jasper Joly; published by Longmans, Green & Co..
  • Tait, Peter Guthrie (1873), "An elementary treatise on quaternions". 2d ed., Cambridge, [Eng.]: The University Press.
  • Michiel Hazewinkel, Nadiya Gubareni, Nadezhda Mikhaĭlovna Gubareni, Vladimir V. Kirichenko. Algebras, rings and modules. Volume 1. 2004. Springer, 2004. ISBN 1-4020-2690-0
  • Maxwell, James Clerk (1873), "A Treatise on Electricity and Magnetism". Clarendon Press, Oxford.
  • Tait, Peter Guthrie (1886), "Quaternion; Wayback Machine". M.A. Sec. R.S.E. Encyclopaedia Britannica, Ninth Edition, 1886, Vol. XX, pp. 160–164. (bzipped PostScript file)
  • Joly, Charles Jasper (1905), "A manual of quaternions". London, Macmillan and co., limited; New York, The Macmillan company. LCCN 05036137 //r84
  • Macfarlane, Alexander (1906), "Vector analysis and quaternions", 4th ed. 1st thousand. New York, J. Wiley & Sons; [etc., etc.]. LCCN es 16000048
  • 1911 encyclopedia: "Quaternions 7 Mayıs 2012 tarihinde Wayback Machine sitesinde arşivlendi.".
  • Finkelstein, David, Josef M. Jauch, Samuel Schiminovich, and David Speiser (1962), "Foundations of quaternion quantum mechanics". J. Mathematical Phys. 3, pp. 207–220, MathSciNet.
  • Du Val, Patrick (1964), "Homographies, quaternions, and rotations". Oxford, Clarendon Press (Oxford mathematical monographs). LCCN 64056979 //r81
  • Crowe, Michael J. (1967), A History of Vector Analysis: The Evolution of the Idea of a Vectorial System, University of Notre Dame Press. Surveys the major and minor vector systems of the 19th century (Hamilton, Möbius, Bellavitis, Clifford, Grassmann, Tait, Peirce, Maxwell, Macfarlane, MacAuley, Gibbs, Heaviside).
  • Altmann, Simon L. (1986), "Rotations, quaternions, and double groups". Oxford [Oxfordshire]: Clarendon Press; New York: Oxford University Press. LCCN 85013615 ISBN 0-19-855372-2
  • Altmann, Simon L. (1989), "Hamilton, Rodrigues, and the Quaternion Scandal". Mathematics Magazine. Vol. 62, No. 5. p. 291–308, December 1989.
  • Adler, Stephen L. (1995), "Quaternionic quantum mechanics and quantum fields". New York: Oxford University Press. International series of monographs on physics (Oxford, England) 88. LCCN 94006306 ISBN 0-19-506643-X
  • Trifonov, Vladimir (1995), "A Linear Solution of the Four-Dimensionality Problem", Europhysics Letters, 32 (8) 621–626, DOI:10.1209/0295-5075/32/8/001
  • Ward, J. P. (1997), "Quaternions and Cayley Numbers: Algebra and Applications", Kluwer Academic Publishers. ISBN 0-7923-4513-4
  • Kantor, I. L. and Solodnikov, A. S. (1989), "Hypercomplex numbers, an elementary introduction to algebras", Springer-Verlag, New York, ISBN 0-387-96980-2
  • Gürlebeck, Klaus and Sprössig, Wolfgang (1997), "Quaternionic and Clifford calculus for physicists and engineers". Chichester; New York: Wiley (Mathematical methods in practice; v. 1). LCCN 98169958 ISBN 0-471-96200-7
  • Kuipers, Jack (2002), "Quaternions and Rotation Sequences: A Primer With Applications to Orbits, Aerospace, and Virtual Reality" (reprint edition), Princeton University Press. ISBN 0-691-10298-8
  • Conway, John Horton, and Smith, Derek A. (2003), "On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry", A. K. Peters, Ltd. ISBN 1-56881-134-9.
  • Kravchenko, Vladislav (2003), "Applied Quaternionic Analysis", Heldermann Verlag ISBN 3-88538-228-8.
  • Hanson, Andrew J. 27 Aralık 2007 tarihinde Wayback Machine sitesinde arşivlendi. (2006), "Visualizing Quaternions", Elsevier: Morgan Kaufmann; San Francisco. ISBN 0-12-088400-3
  • Trifonov, Vladimir (2007), "Natural Geometry of Nonzero Quaternions", International Journal of Theoretical Physics, 46 (2) 251–257, DOI:10.1007/s10773-006-9234-9
  • Ernst Binz & Sonja Pods (2008) Geometry of Heisenberg Groups American Mathematical Society, Chapter 1: "The Skew Field of Quaternions" (23 pages) ISBN 978-0-8218-4495-3.
  • Vince, John A. (2008), Geometric Algebra for Computer Graphics, Springer, ISBN 978-1-84628-996-5.
  • For molecules that can be regarded as classical rigid bodies molecular dynamics computer simulation employs quaternions. They were first introduced for this purpose by D.J. Evans, (1977), "On the Representation of Orientation Space", Mol. Phys., vol 34, p 317.
  • Zhang, Fuzhen (1997), "Quaternions and Matrices of Quaternions", Linear Algebra and its Applications, Vol. 251, pp. 21–57.

Bağlantılar ve uzman yazıları

Şablon:Number Systems


İlgili Araştırma Makaleleri

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

<span class="mw-page-title-main">Vektör</span> büyüklüğü (veya uzunluğu) ve yönü olan geometrik nesne

Matematik, fizik ve mühendislikte, Öklid vektörü veya kısaca vektör sayısal büyüklüğü ve yönü olan geometrik bir objedir. Vektör, genellikle bir doğru parçası ile özdeşleştirilir. Bir başlangıç noktası A ile bir uç noktası B'yi birleştiren bir ok şeklinde görselleştirilir ve ile belirtilir.

Doğrusal dönüşüm, bir fonksiyon çeşididir. T, M boyutlu bir vektörden N boyuta bir doğrusal dönüşüm ise, o zaman;

<span class="mw-page-title-main">Küresel koordinat sistemi</span>

Küresel koordinat sistemi, üç boyutlu uzayda nokta belirtmenin bir yoludur.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Kutupsal koordinat sistemi</span>

Matematikte kutupsal koordinat sistemi veya polar koordinat sistemi, noktaların birer açı ve Kartezyen koordinat sistemindeki orijinin eşdeğeri olup "kutup" olarak bilinen bir merkez noktaya olan uzaklıklar ile tanımlandığı, iki boyutlu bir koordinat sistemidir. Kutupsal koordinat sistemi, matematik, fizik, mühendislik, denizcilik, robot teknolojisi gibi birçok alanda kullanılır. Bu sistem, iki nokta arasındaki ilişkinin açı ve uzaklık ile daha kolay ifade edilebildiği durumlar için özellikle kullanışlıdır. Kartezyen koordinat sisteminde, böyle bir ilişki ancak trigonometrik formüller ile bulunabilir. Kutupsal denklemler, çoğu eğri tipi için en kolay, bazıları içinse yegâne tanımlama yöntemidir.

<span class="mw-page-title-main">Mie saçılması</span>

Mie saçılması veya Mie teorisi, düzlem bir elektromanyetik dalganın (ışık) homojen bir küre tarafından saçılmasını ifade eder. Maxwell denklemlerinin Lorenz–Mie–Debye çözümü olarak da bilinmektedir. Denklemlerin çözümü sonsuz bir vektör küresel harmonik serisi şeklinde yazılır. Saçılma ismini fizikçi Gustav Mie'den almaktadır; analitik çözümü ilk kez 1908 yılında yayınlanmıştır.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

<span class="mw-page-title-main">Hiperbolik sayılar</span>

Gerçel sayılarda olmayan ve karesi 1 olan bir sayının kümeye katılmasıyla üretilen kümeye hiperbolik sayılar kümesi denir. Tıpkı karmaşık sayılarda olduğu gibi, hiperbolik sayılar şeklinde yazılabilen sayılardır, ancak karmaşık sayılardan tek farkı hiperbolik birim denilen sayının

<span class="mw-page-title-main">Çapraz çarpım</span> üç boyutlu uzayda iki yöney (vektör) ile yapılan bir işlem

Matematikte çapraz çarpım veya yöney çarpımı üç boyutlu uzayda iki yöney (vektör) ile yapılan bir işlemdir. Bu çarpımın sonucunda başka bir yöney elde edilir ve bu yöney çapraz çarpımda kullanılan iki yöneye de diktir. Aynı zamanda elde edilen yöney çapraz çarpımda kullanılan iki yöneyin oluşturduğu düzleme dik bir yöneydir. Bu çarpımın çapraz ismi gösterimde kullanılan "×" sembolünden gelmektedir ve her bir vektör sıralı bir şekilde diğeri ile çarpılmakta ve elde edilen yöney bu çarpan yöneylerden biri olmaktadır,yani çaprazlama yapılan modüler bir çarpım biçimidir.Yöney çarpımı ismi de işlemin sonucunda başka bir yöneyin elde edilmesinden gelmektedir. Bu işlemin matematik, fizik ve mühendislikte birçok uygulaması vardır.

Görüntü yük yöntemi, elektrostatikte kullanılan bir soru çözüm tekniğidir. İsimlendirmenin kökeni problemdeki sınır koşullarını bazı sanal yükler ile değiştirme yönteminden gelir.

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

Matematikte, uzunluğu 1 olan ve uzayda bir norma sahip olan vektöre birim vektör denir. Birim vektör genellikle ‘û‘ gibi şapkalı ve küçük harflerle ifade edilir. Normalize vektör veya versor olmayan bir sıfır vektörü u ile eş yönlü olan birim vektörü u

18. yy. ve sonrasında geliştirilmiş, genellikle vektörel mekanik olarak nitelendirilen ve orijinalinde Newton mekaniği olarak bilinen analitik mekanik, klasik mekaniğin matematiksel fizik kaynaklarıdır. Model harekete göre analitik mekanik, Newton’un vektörel enerjisinin yerine, hareketin iki skaler özelliği olan kinetik enerjiyi ve potansiyel enerjiyi kullanır. Bir vektör, yön ve nicelik ile temsil edilirken bir skaler, nicelik ile(yoğunluğu belirtirken) temsil edilir. Özellikle Lagrange mekaniği ve Hamilton mekaniği gibi analitik mekanik de, sorunları çözmek için bir sistemin kısıtlamalarının ve tamamlayıcı yollarının kavramını kullanarak klasik mekaniğin kullanım alanını etkili bir şekilde yapılandırır. Schrödinger, Dirac, Heisenberg ve Feynman gibi kuram fizikçileri bu kavramları kullanarak kuantum fiziğini ve onun alt başlığı olan kuantum alan teorisini geliştirdiler. Uygulamalar ve eklemelerle, Einstein’a ait kaos teorisine ve izafiyet teorisine ulaşmışlardır. Analitik mekaniğin çok bilindik bir sonucu, modern teorik fiziğin çoğunu kaplayan Noether teoremidir.

Matematiksel fizikte, hareket denklemi, fiziksel sistemin davranışını, sistem hareketinin zamanı ve fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemi, matematiksel fonksiyonların kümesini "devinimsel değişkenler" cinsinden izah eder. Normal olarak konumlar, koordinat ve zaman kullanılır ama diğer değişkenler de kullanılabilir: momentum bileşenleri ve zaman gibi. En genel seçim genelleştirilmiş koordinatlardır ve bu koordinatlar fiziksel sistemin karakteristiğinin herhangi bir uygun değişkeni olabilirler. Klasik mekanikte fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte öklid uzayı, eğilmiş uzay ile tanımlanmıştır. Eğer sistemin dinamiği biliniyor ise denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.

<span class="mw-page-title-main">Kepler yörüngesi</span> üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklayan kavram

Gök mekaniği olarak, Kepler yörüngesi üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklar.. Kepler yörüngesi yalnızca nokta iki cismin nokta benzeri yerçekimsel çekimlerini dikkate alır, atmosfer sürüklemesi, güneş radyasyonu baskısı, dairesel olmayan cisim merkezi ve bunun gibi bir takım şeylerin diğer cisimlerle girdiği çekim ilişkileri nedeniyle ihmal eder. Böylece Kepler problemi olarak bilinen iki-cisim probleminin, özel durumlara bir çözüm olarak atfedilir. Klasik mekaniğin bir teorisi olarak, aynı zamanda genel görelilik etkilerini dikkate almaz. Kepler yörüngeleri çeşitli şekillerde altı yörünge unsurları içine parametrize edilebilir.

<span class="mw-page-title-main">Lagrange mekaniği</span> Klasik mekaniğin yeniden formüle edilmesi

Lagrange mekaniği, klasik mekaniğin yeniden formüle edilmesidir. İtalyan-Fransız matematikçi ve astronom Joseph-Louis Lagrange tarafından 1788’de geliştirilmiştir.

Hamiltonyan optik ve Lagrange optiği, matematiksel formülasyonlarının büyük bir kısmını Hamilton mekaniği ve Lagrange mekaniği ile paylaşan Geometrik optiğin iki formülasyonudur.

<span class="mw-page-title-main">Bidördey</span>

Soyut cebirde, bidördeyler sayılarıdır. Klasik dördeylere benzese de sayıları reel sayılar değil karmaşık sayılar kümesinin elemanlarıdır. Bir başka deyişle, dördey grubu elemanları olan elemanlarının katsayıları reel sayılar kümesinin elemanları değil karmaşık sayılar kümesinin elemanlarıdır.