İçeriğe atla

Dönme

Bir kürenin eksendeki dönüşü

Dönme ya da dönüş; bir merkeze bağlı olarak dairesel hareket yapan cisimlerin hareketine denir. Üç boyutlu cisimler her zaman hayali bir dönüş eksen çizgisi etrafında döner. Eğer bu eksen cismin gövdesinden ve kütle merkezinden geçerse, cismin kendi etrafında döndüğü söylenir. Bir dış noktaya göre merkez seçilirse (örneğin; Dünya ve Güneş) bu harekete dönüş veya orbital dönüş denir ve genellikle yerçekimi tarafından oluşturulur.

Matematik

Matematiksel olarak; dönüş bir esnemez,sert cisim hareketidir ve ötelenmeden farklı olarak sabit bir noktası vardır. Bu tanım tüm iki ve üç boyutlu cisimlerin dönüşleri için geçerlidir (uzayda ve düzlemde).

Tüm sert,esnemez cisim hareketleri dönüş ve ötelenme veya bu iki etkenin birleşmesiyle oluşur.

Bir cismin belirli eksen etrafında dönüşü

Dönüş; kademeli bir radyal oryantasyon hareketidir ve bir noktaya bağlıdır. Bu nokta hareketin ekseni üzerindedir. Eksen, cismin hareket düzlemine 90° açıdadır. Eğer eksen cismin merkezinde değil ve bir dış noktadaysa, cisim orbital bir eksen üzerinde hareket eder. Temel olarak yörüngesel dönme ve dönüş arasında herhangi bir fark yoktur. Tek ayrım sağlayan konu, dönüş ekseninin cismin içinden veya cismin dışındaki bir sabit noktada olmasıdır. Bu ayrım hem sert,esnemez cisimler hem de esneyebilir cisimler için geçerlidir.

Dönüş eksenleri ve cisimler arasındaki bağıntı.

Eğer bir eksen üzerindeki dönüşe aynı eksen üzerinde başka bir dönüş uygulanırsa üçüncü bir dönüş ortaya çıkar. Bir dönüşün tersi de bir dönüş hareketidir. Bu sebeple, bir eksen üzerindeki dönüşler bir grup oluşturur. Bazen bir eksen üzerindeki dönüşe başka bir dönüş etki ettiğinde sonuç bir dönüşten ziyade bir öteleme hareketide oluşturabilir.X,Y ve Z eksenleri üzerindeki dönüşler esas (ana) dönüşlerdir. Bir eksende bir dönüş başlatılması öncelikle X ekseninin dönüş yapması gerekir. Daha sonra bu dönüşü Y eksenindeki dönme hareketi ve Z eksenindeki dönme hareketleri takip eder. Bu tanımla uzaydaki herhangi bir dönüş hareketi esas dönme eksenleriyle açıklanabilir. Uçak dinamiğinde esas dönüşler: merkezi dönüş, kanat merkezi dönüş ve gövde merkezi dönüşü olarak bilinir. Bu terminolojiler bilgisayar grafiklendirmesinde de kullanılır.

Astronomi

Dönüş hareketi astronomide de çok sık görülen bir durumdur. Yıldızlar, gezegenler ve benzer şekil ve yapılı gök cisimleri kendi etraflarında dönüş hareketi yaparlar. Güneş sistemindeki gezegenlerin dönüş oranı ilk olarak görsel takip cihazlarıyla ölçülmüştür. Stellar dönüşü; Doppler değişimi üzerinden aktif yüzey etkenleri kullanılarak takip edilip hesaplanmıştır.

Dünyanın dönüşünden dolayı oluşan yıldız kayması Zaman kameraları ile kayıt edilmiş.[1]

Bu dönüş hareketleri bir merkezi ivlemelenme ürünler ve bu ivme Dünya'ya göre dünyanın ekvator bölgesindeki yer çekim kuvvetini karşılar. Bu sonuçlardan biri ekvatora yakın cisimlerin daha hafif tartılmalarıdır. Bir diğer sonuç ise dünyanın kuzey ve güney kısımlarından içeriye doğru basık olmasıdır. Bir başka sonuç ise gezegenlerin dönüş hareketleri yüzünden yalpalanım oluşmasıdır. Bir jiroskopta olduğu gibi genel etki gezegenin dönüş ekseni üzerindeki hareketin yalpalanmasıdır. Şu an için Dünyanın merkezi ve dönüş ekseni arası 23.44° dir ancak bu açı bin yıllar içerisinde yavaş bir şekilde değişmektedir.

Dönüş ve dolanım

Dolanım genellikle dönüşle eş anlamda kullanır ancak özellikle astronomi ve yan dallarında sadece algıda ve anlamada kolaylık sağlanması için orbital dolanım olarak kullanılır. Genel tanımda ise dolanım; bir cismin başka bir cismin etrafında dönmesine denir. Dönüş ise bir cismin kendi eksen çizgisi etrafında dönmesine denir. Uydular kendi gezegenleri etrafında, gezegenlerde kendi yıldızları etrafında dolanım yaparlar (örneğin dünya ve güneş) yıldızlarda bulundukları galaksilerde dolanım yaparlar. Galaksilerin hareket bileşenleri karışıktır ancak genellikle bir dönüş bileşeni barındırır.

Tersin (geri) dönüş

Güneş sistemimizdeki çoğu gezegen (Dünya dahil) güneşi orbitleyerek dönüş hareketi yaparlar. Venüs ve Uranüs bu gezegenlerin dışındadır. Uranüs neredeyse kendi köşe merkezine göre dönüş hareketi yapmaktadır. Günümüzde Uranüs'ün bu dönüşü basit bir orbit dönüşü iken büyük bir patlama ile yörüngeden dışa savruldu ve kendi merkezi ekseni etrafında dönmeye başladı. Venüs'ün ise yavaşça geriye doğru dönüş yaptığı düşünülmektedir. Cüce gezegen Pluto (eskiden gezegen kabul edilen) ise tüm teorilere aykırıdır.

Fizik

Dönüşün sürati açısal frekans (rad/s) veya frekans (dönme/dakika) veya periyot (saniye,gün) ile bulunur. Açısal frekansın değişim miktarına açısal ivmelenme denir (rad/s²). Bu değişim tork yüzünden meydana gelir. Dönüşteki bir değişimin ve torkun arasındaki oran ise eylemsizlikle bulunur. Açısal hız vektörü bir dönüş eksenine bağlıdır aynı şekilde torkta bir eksensel vektördür. Matematiksel olarak bir eksen etrafındaki dönüş hareketinin fiziği eksen-açı gösterimi ile uygulanır. Sağ el kuralına göre, gözlemciye ters olan yön saat yönünde dönüşe ve gözlemciye göre olan eksen ise saat yönünün tersinde dönüş demektir tıpkı bir vida gibi.

Euler dönüşü

Euler dönüşü, dönüş tanımına yeni bir perspektiften bakar. Bu dönüş üç temel dönüş biriminin değiştirilmesi ile oluşturulur. Birimlerden (Euler açıları) birisi değiştirilip diğerleri sabit tutulur. Euler dönüşleri hiçbir zaman tek bir dış eksene göre veya merkezden geçen dönme eksenlerine göre yazılmaz ancak bunların birleşimi tarzında yazılabilir. Euler dönüşleri birden çok eksen dönüşler sistemlerinin birleşmesinden meydana gelir: bunlar ilki ilk açıdır ve z eksenine bağlıdır. Bu dönüşlere devinim, nütasyon ve esas dönüş denir.

Dünya üzerindeki Euler dönüşleri.

Uçuş dinamiği

Uçuş dinamiğinde, Euler açıları merkez, dönüş ve kanat açıları olarak tanımlanır. Dönüş tanımı ise havacılıkta yukarı eğilim anlamında kullanılır yani uçağın burun kısmının kalkıştan sonra yukarı doğru çıkmasıdır. Esas dönüş birimleri ile birçok fiziksel sistem oluşturulabilir bunlara örnek olarak joystick ve yalpa çemberleri verilebilir. Çok basit ancak bir o kadar da kolay yön verme sağlar. Ancak bu dönüş birimlerinin elverişsiz yanı hesaplamalardan kullanımlarının çok zor olmasıdır. Karışık eksen dönüşlerinde yalpa çember kilitlenmeleri sonucu açılar ait oldukları eksenlerden hesaplanamazlar.

Dönüşün uzaydaki temel kuralları

Eğlence parkları

Eğlence parklarındaki çoğu makinede dönüş kullanılmaktadır. Dönme dolap bir merkezi eksen etrafında sabitlenmiştir ve dönüş yapar. Her gondol için paralel bir eksen vardır ve yerçekiminden etkilenirler. Bu sebeple her gondol için herhangi bir anda dönüşten ziyade öteleme olmaktadır. Öteleme vektörünün uç kısmı bir çember oluşturur. Bir atlıkarınca dikey eksen üzerine sabitlenmiştir. Birçok makine çeşitli dönüş eksenlerinin birleşiminden yararlanmaktadır. Uçan salıncaklarda dikey eksen mekanik olarak elde edilmiştir bunun yanında oluşan yatay dönüş ekseni merkezkaç kuvvetinden oluşmaktadır. Çoğu roller-coasterda ise yatay eksen dönüşü kullanılır ve insanların savrulmamaları eylemsizliklerinden kaynaklanır.

Spor

Dönüş kelimesi sporda genellikle spin(çevirme) olarak tanımlanır. Üst dönme ve geri dönme tenisteki dönme etkenleridir. Bilardo ve türlerinde de dönme hareketlerinden faydalanılır. Curving, kriket ve masa tenisi sporları dönme hareketinden faydalanarak topa veya cisimlere yön verilen sporlarıdır.

Kaynakça

  1. ^ "An Oasis, or a Secret Lair?". ESO Picture of the Week. 16 Haziran 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 8 Ekim 2013. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Yörünge</span> bir gökcisminin bir diğerinin kütleçekimi etkisi altında izlediği yola yörünge adı verilir

Gök mekaniğinde yörünge veya yörünge hareketi, bir gezegenin yıldız etrafındaki veya bir doğal uydunun gezegen etrafındaki veya bir gezegen, doğal uydu, asteroit veya lagrange noktası gibi uzaydaki bir nesne veya konum etrafındaki yapay uydunun izlediği kavisli bir yoldur. Yörünge, düzenli olarak tekrar eden bir yolu tanımlamakla birlikte, tekrar etmeyen bir yolu da ifade edebilir. Gezegenler ve uydular Kepler'in gezegensel hareket yasalarında tanımlandığı gibi, kütle merkezi elips biçiminde izledikleri yolun odak noktasında olacak şekilde yaklaşık olarak eliptik yörüngeleri takip ederler.

<span class="mw-page-title-main">Yörünge eğikliği</span>

Gökbilimde, bir yörüngenin eğikliği, o yörüngenin içinde bulunduğu düzlemin referans olarak alınan bir düzlemle yaptığı açıya verilen addır ve derece cinsinden ifade edilir.

<span class="mw-page-title-main">Tutulum</span>

Tutulum, ekliptik veya tutulum düzlemi ya da ekliptik düzlem, Dünya'nın Güneş etrafındaki yörünge düzlemidir. Dünya'da bulunan bir gözlemcinin bakış açısından, Güneş'in bir yıl boyunca gök küre etrafındaki hareketi, yıldızların arka planına karşı ekliptik boyunca bir yol izler. Ekliptik önemli bir referans düzlemidir ve ekliptik koordinat sisteminin temelidir.

<span class="mw-page-title-main">Eylemsizlik momenti</span> dönmeye karşı gösterilen zorluk

Atalet momenti veya eylemsizlik momenti, dönmekte olan bir cismin, dönme hareketine karşı durmasına eylemsizlik momenti denir. Eylemsizlik momenti, toplam dönme hareket gücüne karşı direnç oluşturur ve bu yüzden cisim, tam verimde dönemez.

<span class="mw-page-title-main">Açısal momentum</span> Fiziksel nicelik

Açısal momentum, herhangi bir cismin dönüş hareketine devam etme isteğinin bir göstergesidir ve bu nicelik cismin kütlesine, şekline ve hızına bağlıdır. Açısal momentum bir vektör birimidir ve cismin belirli eksenler üzerinde sahip olduğu dönüş eylemsizliği ile dönüş hızını ifade eder.

<span class="mw-page-title-main">Katı cisim dinamiği</span>

Katı-cisim dinamiği, dış kaynaklı kuvvetler karşısında hareket eden birbiri ile ilişkili sistemlerin analizini inceler. Her bir gövde için, cisimlerin katı olduğu ve bu nedenle uygulanan kuvvetler nedeni ile deforme olmadıkları, sistemi tanımlayan taşıma ve dönme parametrelerinin sayısını azaltarak analizi basitleştirmektedir.

<span class="mw-page-title-main">Tork</span> bir kuvvetin nesnenin ekseninde, dayanak noktasında ya da çevresinde dönme eğilimi

Tork, kuvvet momenti ya da dönme momenti, bir cismin bir eksen etrafındaki dönme, bükülme veya burulma eğilimini dönme ekseni merkezine indirgeyerek ölçen fiziksel büyüklüktür. Torkun büyüklüğü moment kolu uzunluğuna, uygulanan kuvvete ve moment kolu ile kuvvet vektörü arasındaki açıya bağlıdır.

Titius-Bode yasası Güneş Sistemi'nde bulunan gezegenlerin yarı büyük eksenlerinin basit bir kurala dayandığını ileri süren bir varsayımdır. 1846 yılında Neptün'ün bulunmasıyla geçersiz kalmıştır. Yasa adını Johann Daniel Titus (1729-1796) ve Johann Elert Bode (1747-1826) adlı iki Alman astronomundan almıştır. Titus kuralı ortaya koymuş, Bode ise kuralın bilim dünyasınca tanınmasını sağlamıştır.

<span class="mw-page-title-main">Yörüngeler listesi</span> Vikimedya liste maddesi

Yörünge çeşitleri aşağıda listelenmiştir:

<span class="mw-page-title-main">Gökküre</span>

Gökküre, Gökbilim ve seyrüseferde, Dünya'yla eşmerkezli ve eşeksenli, devasa çaplı varsayımsal bir küredir. Gökyüzündeki tüm cisimlerin iç yüzeyinde yer aldığı bir küre şeklinde düşünülebilir. Gök ekvatoru yer ekvatoruyla, gök kutupları da yerin kutup noktalarıyla aynı doğrultuda çakışıktır. Gökküre yansıtması gökcisimlerinin konumlarının belirlenmesi için çok pratik bir yöntemdir.

<span class="mw-page-title-main">Apsis (astronomi)</span> Bir cismin yörüngesindeki en uzak ve en yakın nokta

Apsis, gök mekaniğinde, eliptik yörüngedeki bir cismin genelde sistemin kütle merkezi durumunda da olan çekim merkezine yörünge boyunca en yakın ve en uzak olduğu noktalara verilen addır.

<span class="mw-page-title-main">Kepler'in gezegensel hareket yasaları</span>

Kepler'in gezegensel hareket yasaları, Güneş Sisteminde bulunan gezegenlerin hareketlerini açıklayan üç matematiksel yasadır. Alman matematikçi ve astronom Johannes Kepler (1572-1630) tarafından keşfedilmişlerdir.

Açısal hız, bir objenin birim zamandaki açısal olarak yer değiştirme miktarına verilen isimdir. Açısal hız vektörel olup bir cismin bir eksen üzerindeki dönüş yönünü ve hızını verir. Açısal hızın SI birimi radyan/saniyedir, ancak başka birimlerde de ölçülebilir. Açısal hız genellikle omega sembolü ile gösterilir. Açısal hızın yönü genellikle dönüş düzlemine diktir ve sağ el kuralı ile bulunabilir.

<span class="mw-page-title-main">Geri ve ileri yönlü hareket</span> Bir astronomik cismin yörünge veya kendi ekseni etrafında, ana cismine göre ters yönde dönüşü

Geri yönlü hareket, genel olarak, astronomik bir nesnenin kütle çekimi altında bulunduğu birincil cismin dönüş yönüne göre tam tersi yönündeki yörünge veya dönme hareketi olarak tanımlanmaktadır. Ayrıca bir nesnenin dönme ekseninin salınımı veya üğrümü gibi diğer hareketleri de tanımlayabilir.

<span class="mw-page-title-main">Dönel simetri</span>

Dönel simetrisi olan bir cisim, belli bir dönmeden sonra aynı görünür. Bir cismin birden çok dönel simetriği olabilir; örneğin, yansıma ve ters çevrilmeyi saymazsak, Man Adası bayrağında görünen triskelion şeklinin üç adet dönel simetriği vardır, bir diğer deyişle üçlü simetriye sahiptir. Dönel simetri derecesi, bir şeklin başka bir kenarından veya köşesinden aynı görünmesi için kaç derece döndürülmesi gerektiği anlamına karşılık gelir.

<span class="mw-page-title-main">Sabit bir eksen etrafında dönme</span> dönme hareketinin özel bir durumu

Sabit bir eksen etrafında dönme dönme hareketinin özel bir durumudur. Sabit eksen hipotez yönünü değiştirerek bir eksen olasılığını dışlar ve salınım devinim gibi olguları tarif edemez. Euler’in dönme teoremine göre, Aynı zamanda, sabit eksenler boyunca eş zamanlı rotasyon imkânsızdır. Eğer iki rotasyona aynı anda kuvvet uygulanırsa, rotasyonun yeni ekseni oluşur.

<span class="mw-page-title-main">Yarkovsky etkisi</span>

Yarkovsky etkisi momentum taşıyan termal fotonların anizotropik emisyonlarının neden olduğu uzayda hareket eden cisimlerin üzerinde etkili olan bir kuvvettir. Üzerindeki etkisi çok daha etkin olması dolayısıyla en fazla 10 km çapındaki asteroitler ve meteorlar ile bağlantılı olduğu genellikle kabul edilir.

Laplace düzlemi veya Laplasyan düzlem, adını kaşifi Pierre-Simon Laplace'tan (1749-1827) alan ve bir gezegen uydusunun anlık yörünge düzleminin ekseni etrafında döndüğü ortalama ya da referans düzlemdir.

Bir gezegen sisteminin değişmeyen düzlemi, sistemin ağırlık merkezinden geçen ve açısal momentum vektörüne dik olan düzlemdir.

Eş-yörüngesel hareket, iki veya daha fazla sayıda astronomik cismin birincil cisim yörüngesiyle aynı veya benzer mesafede bulunan bir yörüngede seyretmesi durumudur. Başka bir deyişle bu cisimler, 1:1 ortalama hareket rezonansında veya ters yönlü ise 1:-1 rezonansındadır.