Tam sayılar, sayılar kümesinde yer alan sıfır (0), pozitif yönde yer alan doğal sayılar ve bunların negatif değerlerinden oluşan negatif sayılardan oluşan sayı kümesidir.
Matematikte cebirin temel teoremi karmaşık değişkenli polinomların köklerinin varlığıyla ilgili temel bir sonuçtur. D'Alembert-Gauss teoremi olarak da anılmaktadır.
Grup teorisi veya Grup kuramı, simetrileri inceleyen matematik dalıdır. Simetri kuramı olarak da adlandırılabilir. Bir nesnenin simetrileri ile kast edilen, nesneye uygulandığında nesneye hiçbir etki olmamış gibi sonuç veren dönüşümlerdir. Her nesnenin en az bir simetrisi vardır: hiçbir şey yapmadan olduğu gibi bırakma dönüşümü. Bahsettiğimiz dönüşümlerin tersleri de vardır ve aradığımız özellikleri sağlarlar. Son olarak da dönüşümlerin art arda yapılması, birleşimli bir işlemdir. Bu üç koşula sırasıyla birim elemana sahip olma, elemenların tersi olma ve grup işleminin birleşmeli olması denir. Bu kavramların matematikte soyutlanması, üzerinde tersinebilir ve bileşme özelliğine sahip ikili bir işlemin tanımlı olduğu kümeler ile yapılır. Daha detaylı açıklamak gerekirse, grup nesnesi bir küme G ve onun üzerinde tanımlı bir işleminden oluşur. Bu operasyonun aşağıdaki şartları sağlaması gereklidir:
Halka, matematikte cebirin temel yapılarından biridir ve soyut cebirde tam sayıların soyutlamasıdır. Bu yapıyı işleyen dala halka kuramı denir. Halkalar diğer bir temel yapı olan grupların üzerine inşa edilir. Her halka, aynı zamanda değişmeli bir gruptur, ama bir halkadan daha fazla özelliği sağlaması istenir. Örneğin halkada grup işlemine ek olarak ikinci bir işlem daha vardır. Halkalara örnek olarak tam sayılar, modülo n sayılar, polinomlar ya da karmaşık sayılar verilebilir.
Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:
Cisim, halka ve grup gibi soyut bir cebirsel yapıdır. Kabaca, elemanları arasında toplama, çıkarma, çarpma ve bölme yapılabilen ve bu işlemlerde sayılardan alışık olduğumuz temel aritmetik kurallarının geçerli olduğu bir küme olarak tanımlanabilir.
Matematikte karmaşık bir fonksiyonun Laurent serisi bu fonksiyonun negatif dereceli terimler de içeren kuvvet serisi temsilidir. Karmaşık fonksiyonların Taylor serileri açılımının mümkün olmadığı durumlarda bu fonksiyonları açıklamak için de kullanılabilir. Laurent serisi ilk defa 1843'te Pierre Alphonse Laurent tarafından yayınlanmış ve bu matematikçinin adını almıştır. Karl Weierstrass 1841'de bu seriyi bulmuş olabilir ancak o zamanda ilk yayınlayan olamamıştır.
Döngüsel artıklık denetimi, çoğunlukla sayısal şebekelerde ve depolama cihazlarında kullanılan ve ham veride yapılan hatalı değişimleri algılayan, uygulaması kolay ve güvenliği güçlü bir hata bulma yöntemidir.
Kodlama kuramında polinom kod, bir doğrusal kod türüdür.
18. yy. ve sonrasında geliştirilmiş, genellikle vektörel mekanik olarak nitelendirilen ve orijinalinde Newton mekaniği olarak bilinen analitik mekanik, klasik mekaniğin matematiksel fizik kaynaklarıdır. Model harekete göre analitik mekanik, Newton’un vektörel enerjisinin yerine, hareketin iki skaler özelliği olan kinetik enerjiyi ve potansiyel enerjiyi kullanır. Bir vektör, yön ve nicelik ile temsil edilirken bir skaler, nicelik ile(yoğunluğu belirtirken) temsil edilir. Özellikle Lagrange mekaniği ve Hamilton mekaniği gibi analitik mekanik de, sorunları çözmek için bir sistemin kısıtlamalarının ve tamamlayıcı yollarının kavramını kullanarak klasik mekaniğin kullanım alanını etkili bir şekilde yapılandırır. Schrödinger, Dirac, Heisenberg ve Feynman gibi kuram fizikçileri bu kavramları kullanarak kuantum fiziğini ve onun alt başlığı olan kuantum alan teorisini geliştirdiler. Uygulamalar ve eklemelerle, Einstein’a ait kaos teorisine ve izafiyet teorisine ulaşmışlardır. Analitik mekaniğin çok bilindik bir sonucu, modern teorik fiziğin çoğunu kaplayan Noether teoremidir.
Bézout teoremi, cebirsel geometride n değişkenli n polinomun ortak sıfırlarının sayısı ile ilgili bir ifadedir. Orijinal biçiminde teorem, genel olarak ortak sıfırların sayısının, polinomların derecelerinin çarpımına eşit olduğunu belirtir. Adını Fransız matematikçi Étienne Bézout'dan almıştır.
Matematikte, Ruffini'nin kuralı, bir polinomun Öklid bölünmesinin x – r biçimindeki bir denklem ile kağıt kalemle hesaplanması için geliştirilmiş bir yöntemdir. 1804 yılında Paolo Ruffini tarafından tanımlanmıştır. Kural, bölenin doğrusal bir bölen olduğu özel bir sentetik bölme durumudur.
Matematiğin bir alt dalı olan olasılık teorisinde ve rassal süreçlerde, filtre ya da süzgeç azalmayan bir σ-cebiri ailesidir. Amerikalı matematikçi Joseph Doob tarafından 1953'te literatüre sokulmuştur.
Matematiğin bir alt dalı olan olasılık teorisinde bir martingal ya da martingal süreci bir sonraki beklenen değerinin geçmişteki bütün gözlemlenmiş değerlerden bağımsız olarak şimdiki gözlemlenen değer olduğu bir stokastik süreçtir.
Matematiğin bir alt dalı olan olasılık teorisinde Girsanov teoremi, stokastik süreçlerin ölçü değişimleri altında nasıl değiştiğini gösteren ve özellikle finansal matematikte yaygın uygulaması olan bir teoremdir. Teorem, finansal matematikte bir dayanak varlığın fiziksel ya da gözlemlenen bir ölçüde yazılan fiyat sürecinin riske duyarsız ölçüye nasıl dönüştürüleceğini gösterir. Teorem, stokastik diferansiyel denklemlerin zayıf çözümlerinin varlığını ve biricikliğini kanıtlamakta da yararlıdır.
Matematiğin bir alt dalı olan çok değişkenli karmaşık analizde bir analitik çokyüzlü kompleks uzay Cn'de sonlu sayıda holomorf fonksiyonlar aracılığıyla üretilen bir bölgedir. Analitik çokyüzlüler, özel geometrileri ve belki de çoğunlukla çokyüzlüyü oluşturan fonksiyonların sahip olduğu analitik özellikleri nedeniyle ilgi çekicidir.
Sayısal analiz ve matematiksel analiz alt alanlarında, bir trigonometrik polinom, sin(nx) ve cos(nx) fonksiyonlarının sonlu bir doğrusal kombinasyonu olup n bir veya daha fazla doğal sayı değerini alır. Gerçel değerli fonksiyonlar için, katsayılar gerçel sayılar olarak alınabilir. Kompleks katsayılar için, böyle bir fonksiyon ile sonlu bir Fourier serisi arasında bir fark yoktur.