İçeriğe atla

Döner kanatlı pompa

Eksantrik döner kanatlı pompa

Döner kanatlı veya paletli pompa, gövdesinin (stator) içinde dönen rotor'a takılı birkaç kanat ve kanaldan oluşan, emme veya basınç görevlerinde gazları ve sıvıları pompalayan pozitif deplasmanlı bir pompa'dır.

Rotorun dönme ekseni statora eksantriktir. Rotorun kanatları dönerken kendi kılavuzlarında kayar ve yay ve merkezkaç kuvvetiyle statorun duvarlarıyla temas halindedir. Bu nokta emme ve basınç odaları arasındaki ayrım noktasıdır.

Kanatlı pompa, içinde sabit stator olan dökme demir gövde ve statora teğet dönen çelik bir rotordan oluşur.

Paletli pompa, yüksek viskoziteli ve yüksek basınçlı akışkanlar için diğer vakum pompa'ları kadar uygun olmayıp çalıştırması da daha karmaşıktır. Kanatlı pompalar kısa süreli kuru çalışmaya dayanır ve düşük viskoziteli akışkanları pompalamada iyidir. Pompalanacak ortamın dışında bulunuyorsa kanatlı pompa emme pompası olarak çalışır.

Hidrolik kanatlı pompalarda genellikle balanslı tipte gövdede 2 emme ve 2 boşaltma vardır ve basınç 300 barın üzerine çıkabilmektedir

Paletli pompalar, motorlu araçlardaki klima kompresörleri veya kornalarda ayrıca tıp dahil olmak üzere birçok alanda vakum pompası olarak kullanılırlar.

Benzer bir prensip daha sonra Wankel motoru'na ilham kaynağı olmuştur.

Tarihçe

Kanatlı pompa 16 Haziran 1874'te patentini alan Sackville, New Brunswick'ten Charles C. Barnes tarafından icat edilmiştir.[1][2][3] O günden bu yana, gazlar için değişken kanatlı pompa (1909) dahil olmak üzere bu pompada çeşitli iyileştirmeler yapılmıştır.[4]

Nasıl çalışır

Eksantrik döner kanatlı pompa tasarımı. Modern pompaların rotor ve stator arasında alan temasına (hat temasına değil) sahip olduğuna dikkat ediniz.
1. pompa gövdesi
2. rotor
3. kanatlar
4.yay

Bir veya daha çok, genellikle radyal düzenlenmiş kılavuzlar rotorun (2) içindedir. Döner valf görevi yapan kanatlar (3) ise bu kılavuzların içindedir. Bu kanatlar stator ile rotor arasındaki boşluğu birkaç odaya böler. Bir dönüşte rotor (2) ile stator (1) arasındaki mesafede değişikliğini telafi etmek için döner kanatlar, kılavuzların içinde hareket edebilir. Genellikle kılavuzun tabanındaki bir yay (4) vasıtasıyla kanatlar stator iç duvarına doğru bastırılır.

Yağlama için döner kanatların çalıştığı pompada genellikle küçük bir yağ haznesi vardır. Bu nedenle pompa her zaman yağın az bir kısmını dağıtır. Yağ genellikle çıkış kanalında ayrılır ve yağlayıcı haznesine geri gönderilir. Yağsız döner kanatlı pompalar da vardır.

Eliptik kesitli mahfaza, oda (4) içindeki rotor basıncını eşitler.

Basit vakum pompaları aslında tam olarak şematik çizimde gösterildiği gibi imal edilir. Statorun içinde giriş veya çıkış deliğiyle bağlantısız "taşıma yolu" adlı değişken bir hacim vardır. Pompalanan madde, kapalı "taşıma bölümünde" pompalanırken seyreltilip tekrar sıkıştırılır. Ancak vakum pompası olarak kullanıldığında genellikle çok seyreltilmiş gaz pompalanır. Taşıma bölümünde akışkanı seyreltmek veya sıkıştırmak için gereken iş bu nedenle azdır. Diğer uygulamalar için, özellikle de sıvılar gibi sıkıştırılamaz akışkanların taşınması için genellikle giriş ve çıkış delikleri büyük tasarlanarak çözüm sağlanmalıdır:

  • Giriş açıklığı yaklaşık 90° işaretine kadar
  • Çıkış açıklığı yaklaşık 270° işaretinden itibaren

Büyütülmüş delikler tarafından ayarlanan kontrol zamanlaması ile taşıma yolu ve onunla birlikte sorun da ortadan kalkar.

Döner kanatlı vakum pompasının rotoru ve kanatları. Plastik kanatlar (sağda) rotorun uzunlamasına oyuklarına yerleştirilir.
Döner kanatlı bir vakum pompasının yatak koruyucusunun iç görünümü. Eksenin eksantrik yatağı görülebilir. Giriş ve çıkış sırasıyla sol altta ve sağ alttadır.

Gaz balastı

Kanatlı pompa mbar emme basıncında çalıştığında, pompanın sıkıştırma oranı (boşaltma basıncının emme basıncına oranı) yaklaşık olur.

Vakum odasında kolayca yoğunlaşabilen ör. su buharı veya boruları temizlerken kullanılan sıvılardan gelen buharlar (aseton, alkol vb.) gibi buharlar mevcut olabilir. Sıkıştırırken bu buharlardan birinin kısmi basıncı doymuş buhar basıncına ulaşırsa sıvılaşacak ve yağ ile emülsifiye olur. Sonuçta vakum iyileşmez. Balast havası, pompa gövdesine yerleştirilen ayarlanabilir bir açma valfi aracılığıyla kuru havanın sıkıştırma odasına verilmesinden oluşur. Böylece sıkıştırma odasındaki toplam basınç arttırılır ve valf, daha büyük bir sıkıştırma hacmini sınırlandıran kanatların konumuna yükselir. Bu, tahliye sırasında buharların kısmi basıncının düşmesine neden olur.

Gaz balastıyla çalışırken, gaz sıkıştırılmadan önce küçük bir sızıntı valfi yoluyla emme odasına hava verilir. Bu, sıkıştırma oranını azaltarak gazın yoğunlaşma noktasına ulaşılmadan önce dışarı atılmasını sağlar.[5] Bu nedenle sistemde elde edilebilecek minimum basınç biraz artar ve aynı zamanda uçucu maddeler, daha büyük debi nedeniyle pompa yağından dışarı atılır ve içinde ayrılma olasılıkları azalır. Valf çoğu zaman elle kapatılır ve bu da kullanıcının çalışma modları arasında seçim yapmasına olanak verir.

Gaz balastıyla çalışmada artan oranda yayılan yağ buharı, ayırıcıda toplanıp geri gönderilir ve pompa yağının geçici olarak bulanıklaşmasına neden olur.

Avantajları

  • debi titreşimi azdır
  • orta düzeyde gürültülü verir
  • her iki akış yönünde de çalışabilir
  • debisi ayarlanabilir
  • uygun maliyetlidir
  • çok verimlidir

Dezavantajları

  • fazla aşınma ve yıpranma
  • yalnızca orta basınçlar için uygundur (maksimum yaklaşık 300 bar'a kadar)

Sabit uzunlukta döner kanat

Mavi renkli sabit uzunlukta döner valf, mavi mahfazanın içinde hareket eder. Sarı rotordaki bir yuva içinde hareket eder.
Muhafazanın özel şekli (mavi) nedeniyle, döner valf (kırmızı), mil (siyah) dönse bile her zaman aynı uzunluğa sahiptir. Sabit dönüş çeyreğinde (sarı), döner valf mil içinde hareket etmez.

Değişken uzunluktaki döner kanatlı döner kanatlı pompa şekillerine ek olarak, patentlerde, ör. sabit uzunluktaki döner kanatlıların kullanıldığı özel formlar da önerilmiştir.[6] Bu özel şekillerden bazıları, dönen milin içindeki döner valfin konumunu değiştirmeden dönen çeyrek daireli geometrik tasarımları vardır.

Türler

En basit kanatlı pompa, büyük bir dairesel hacimde dönen dairesel rotorludur. Bu iki dairenin merkezleri eksantrikliğe neden olacak şekilde kaydırılmıştır. Kanatlar rotora açılan yuvalara (kılavuz) takılmıştır. Kanatların, rotor dönerken stator duvarı ile teması koruyabilecekleri şekilde, bu yuvalarda sınırlı hareketine izin verilir. Kanat yaylar, yerçekimi veya merkezkaç kuvveti ile bu teması sürdürür.

Kanat uçlarıyla pompa duvarı arasında daha iyi sızdırmazlık yapmaya yardım etmek için mekanizma içinde az miktarda yağ olabilir.

Kanatlar ile pompa duvarı arasındaki temas, pompalama yapan "kanat odalarıyla" pompa hacmini böler. Pompanın emme tarafındaki kanat odalarının hacmi artar ve böylece pompalanan sistemden, bazen de sadece atmosferden gelen giriş vakum basıncı tarafından içeri itilen sıvı ile pompa dolar. Pompanın boşaltma tarafında kanat odacıklarının hacmi azalır böylece sıvı çıkıştan dışarı itilir. Kanat hareketi, her turda aynı hacimde sıvı emer.

Basıncı artırmak için sıvıyı iki veya daha çok döner kanatlı pompa mekanizmasından geçiren çok kademeli döner kanatlı vakum pompaları 10−6 mbar (0,0001 Pa) kadar düşük vakum basınçlarına ulaşabilir.

Tek etkili ve çift etkili plakalı hidrolik pompaların imalatı yapılmaktadır[7]. Tek etkili pompalarda emme ve boşaltma işlemi hidrolik pompa milinin devri başına bir kez, çift etkili pompalardaysa iki kez gerçekleştirilir.

Tek etkili pompanın çalışma prensibi aşağıdaki gibidir. Pompa miline tork uygulandığında hidrolik pompanın rotoru dönmeye başlar. Merkezkaç kuvvetinin etkisi altında (veya kanatların altındaki yayların elastik kuvvetinin etkisi altında), kanatlar stator mahfazasına doğru bastırılır ve sonuçta birbirinden hava geçirmez şekilde ayrılmış iki boşluk oluşur. Boşluklardan birinin hacmi kademeli olarak artarken (bu boşlukta emme oluşur) ve diğer boşluğun hacmi yavaş yavaş azalır (çalışma sıvısı bu boşluktan dışarı pompalanır).

İki plakalı kanatlı hidrolik pompa çalışma prensibini gösteren çizim

Çalışma sırasında çalışma hacminin değiştirilmesi yalnızca tek etkili pompalarda yapılabilir. Ancak bu tür hidrolik pompalarda, yüksek basınç boşluğunun yanından rotora sabit bir radyal kuvvet etki eder ve bu da hidrolik makine parçalarının daha hızlı aşınmasına neden olur. Çift etkili pompalarda iki yüksek basınç boşluğu vardır ve radyal kuvvetler birbirini dengeler. Çalışma hacminin değiştirilmesi, eksantrikliğin - yani rotor ekseninin stator eksenine göre yer değiştirme miktarı - değiştirilerek yapılır.

Paletli hidrolik pompalar 14 MPa'ya kadar basınçlarda çalışma kapasitelidir.[8], önerilen dönüş hızları genellikle 1000-1500 dev/dak aralığındadır[8].

Kanatlı pompalar, yalnızca kanatların altındaki boşlukta kanatları stator mahfazasına doğru bastıran yaylar varsa hidrolik motor modunda kullanılabilir. Bu tür yayların yokluğunda pompa geri döndürülemez.

Dişli pompa ile karşılaştırıldığında kanatlı hidrolik pompalar daha düzgün debilidir[9] ve döner pistonlu ve pistonlu hidrolik pompalarla karşılaştırıldığında daha ucuzdur, tasarımı daha basittir ve çalışma sıvısının filtrelenmesine daha az gerek duyulur.

Kullanımlar

Kanatlı pompalar genellikle yüksek basınçlı hidrolik pompa'lar olarak ve süperşarj, hidrolik direksiyon, klima ve otomatik şanzıman pompaları dahil olmak üzere otomobillerde kullanılır.

Kanatlı hidrolik pompalar hacimsel hidrolik tahrik sistemlerinde (örneğin, metal kesme makinelerinin tahrikinde) çok kullanılır.

Orta basınç aralığındaki paletli pompalar, alkolsüz içecek dağıtıcıları ve espresso kahve makineleri için karbonatörler gibi uygulamalarda kullanılır.

Ayrıca kanatlı pompalar, otomatik egzoz emisyon kontrolü için ikincil hava enjeksiyonu gibi düşük basınçlı gaz uygulamalarında veya düşük basınçlı kimyasal buhar biriktirme sistemlerinde kullanılabilir.

Döner kanatlı pompalar çok kullanılan vakum pompası türüdür ve iki kademeli pompalar 10−6 bar'ın oldukça altındaki basınçlara inebilir.

Kanatlı pompalar,

  • büyük kamyonlarda ve dizel motorlu binek araçlarda (motorları emme vakumu oluşturmayan) fren güçlendirici aracılığıyla fren desteği sağlamada,
  • çoğu hafif uçaktaki jiroskopik uçuş aletleri'ni çalıştırmada,
  • klimalar'ın kurulumu sırasında soğutucu hatlarının boşaltılmasında,
  • laboratuvarda donduruculu kurutucularda ve fizikte vakum deneyleri gibi uygulamalarda bulunur.

Kanatlı pompada pompalanan gaz ve yağ pompanın içinde karıştığı için dışarıdan ayrılması gerekir. Bu nedenle giriş ve çıkışta, yağ damlalarının gazdan ayrıldığı, muhtemelen girdaplı, büyük bir bölme vardır. Bazen girişte, ayrık pompalama yağını ve suyu yoğunlaştırmak ve girişe geri damlamasını sağlamak için oda havasıyla soğutulan panjurlar vardır (pompa genellikle 40 K daha sıcaktır). Bu pompalar derin vakumlu sistemlerde kullanıldığında (pompaya gaz girişinin çok az olduğu yerlerde), moleküler yağın geri akışı nedeniyle tüm sistemin kirlenmesi önemli endişe kaynağıdır.

  • Kaba ve hassas vakum aralığı için vakum pompası olarak 1 ila 0,001 mbar arası yak. 20–50 m³/saat debilerde kullanılır
  • Hidrolik pompa (örn. hidrolik direksiyon, otomobillerdeki akıllı koltuklar)
  • Buhar motoru (bazı modern buhar motorları ters kanatlı pompa gibi çalışır)
  • İklimlendirme sistemi kompresöründe,
  • Espresso makinesinde[10] kullanılır

Değişken deplasmanlı kanatlı pompa

Kanatlı pompanın en büyük avantajlarından biri, tasarımın düz dişli (X-X) veya gerotor (I-X) pompa gibi sabit deplasmanlı bir pompa yerine değişken deplasmanlı bir pompa olmaya kolaylıkla elverişli olmasıdır. Rotordan eksantrik halkaya kadar olan merkez hattı mesafesi, pompanın deplasmanını belirlemede kullanılır. Eksantrik halkanın rotora göre dönmesine veya ötelenmesine izin verilerek deplasman değiştirilebilir. Eksantrik halka yeterince uzağa hareket ederse kanatlı pompanın ters yönde pompalaması bile mümkündür. Ancak performans her iki yönde de pompalayacak şekilde optimize edilemez. Bu çok ilginç bir hidrolik kontrollü yağ pompası oluşturabilir.

Değişken deplasmanlı kanatlı pompa, enerji tasarrufu sağlayan bir cihaz olarak otomotiv şanzımanları da dahil olmak üzere birçok uygulamada 30 yılı aşkın süredir kullanılmaktadır.

Malzemeler

  • Dış parçalar (kafa, gövde) – dökme demir, sünek demir, çelik, pirinç, plastik ve paslanmaz çelik
  • Kanat, itme çubukları – karbon grafit, Polieter eter keton (PEEK)
  • Uç plakaları – karbon grafit
  • Salmastra – bileşenli mekanik salmastralar, endüstri standardı kartuşlu mekanik salmastralar ve manyetik tahrikli pompalar
  • Conta – bazı satıcılarda vardır ancak genellikle ince sıvı hizmeti için önerilmez

Genel özellikler

  • Çalışma basıncı eğer rotor dengeliyse 100 bar ile 320 bar arasındadır,
  • Çalışma sıcaklığı -18 ile 100 °C arasındadır,
  • Bu teknolojinin avantajı uygun performans/fiyat oranı ve düşük gürültü seviyesidir,
  • Rotor dengeliyse 600 dev/dak'den 3000 dev/dak'ya kadar frekans hızında dönebilir,
  • Sıvının kinematik viskozitesi 10 mm2/s'den 800 mm2/s'ye kadar olabilir,
  • Verimi genelde arasındadır.
  • Kullanılan sıvılar:
  • Uygulama alanları:
    • Direksiyon yardımı (otomobil);
    • Klima;
    • Mazot (Dizel motor yakıtı);
    • Plastik enjeksiyon makinaları;
    • Hidrolik presler.
    • Çöp konteynerleri;
    • Vakum pompası olarak kullanılabilir (1 mbar'a kadar vakum sağlanabilir).
Eksantrik kanatlı pompanın şeması.

Eksantrik kanatlı pompa

Eksantrik kanatlı pompanın rotoru ve statoru dairesel kesitlidir ancak eksenleri eksantriktir. Ek bir cihaz eksantriklik değerini değiştirebilir, bu durumda pompa değişken hacim'lidir.

Bu ayar cihazı deşarj basıncıyla kontrol edilebilir. Basınç çok yükselirse pompa deplasmanı sıfırlanır ve bu durumda pompa debi'si kesilir.

n sayıda kanatlı ve düzenli yerleştirilmiş yani açısıyla dengelenmiş bir pompa için:
:

b kanatların santimetre cinsinden uzunluğu;
e santimetre cinsinden eksantriklik;
R1 santimetre cinsinden stator yarıçapıdır.

Bu formül kanat kalınlığı ihmal edildiğinden kesin değildir.

Kam kanatlı pompa

BMW 7 Serisi klimanın kam kanatlı pompası.

Bu durumda hacim değişimi statorun iç şekliyle elde edilir; özel bir düzenleme yapılmadığı sürece silindir kapasitesi sabittir.

Karşı fotoğraftaki pompada, statorun şekli iki ayrı simetrik bölme oluşturur. Bu simetri, rotor üzerindeki kuvvetleri dengeler.

İki kademeli pompalar

Aynı gövdede seri bağlı iki pompadan oluşur. Tek kademeli bir pompanınkinden yaklaşık on kat daha az sınır basıncının elde edilmesini mümkün kılar. Nitekim tek kademeli pompalarda, dış atmosferle temas halindeki yağ havayı emer ve emme tarafındaki kanatlar döndüğünde kısmen serbest bırakır, böylece sınır basıncı artar.

Ayrıca bakınız

Kaynakça

  1. ^ Mario Theriault, Great Maritime Inventions 1833-1950, Goose Lane Editions, 2001, p. 53.
  2. ^ Bill Snowdon, "Charles C. Barnes: Farmer, Fisherman, Ship-builder, Inventor 15 Ocak 2024 tarihinde Wayback Machine sitesinde arşivlendi.", in The White Fence, Issue #54, February 2012, Tantramar Heritage Trust"
  3. ^ CA 3559A, Charles C. Barnes, "Rotary Pump", 1874-06-15 tarihinde yayımlandı 
  4. ^ US 878528, Hoffmann, C., "Rotary pump for gases", 1906 tarihinde yayımlandı, 1908 tarihinde verildi 
  5. ^ Gasballastöffnung einer Ölpumpe. 15 Ocak 2024 tarihinde Wayback Machine sitesinde arşivlendi. In: bcp.fu-berlin.de
  6. ^ numarası102009040647 Yayın numarası102009040647 
  7. ^ Источник литературы 1, стр. 4
  8. ^ a b Источник литературы 2, стр. 125
  9. ^ Источник литературы 1, стр. 3
  10. ^ Nehete, Hemant (2020). Basic Piping Engineering [Pumps for mid-range pressures include applications such as carbonators for fountain soft-drink dispensers and espresso coffee machines.]. Walnut Publication. s. 26. ISBN 9789389744699. 25 Mayıs 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 15 Ocak 2024. 

Kaynakça2

  • Oswald, Dieter (1989). "Vakuum in Forschung und Praxis". Die Entwicklung der Drehschiebervakuumpumpe. 1. 1. ss. 36-40. doi:10.1002/vipr.2230010110. 
  • Konwitschny, Rudolf (2006). "Die Entwicklung der letzten 40 Jahre". Drehschieber-Vakuumpumpen. 12. 5. Physik Journal. ss. 74-75. 

Dış bağlantılar

İnternet linkleri

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektrik motoru</span> Elektrik enerjisini mekanik enerjiye çeviren aygıt.

Elektrik motoru, elektrik enerjisini mekanik enerjiye dönüştüren aygıttır. Her elektrik motoru biri sabit (stator) ve diğeri kendi çevresinde dönen iki ana parçadan oluşur. Bu ana parçalar, sargılar gibi elektrik akımını ileten parçalar, manyetik akıyı ileten parçalar ve vidalar ve yataklar gibi konstrüksiyon parçaları olmak üzere tekrar kısımlara ayrılır.

<span class="mw-page-title-main">İçten yanmalı motor</span> yakıtın yanma odasında oksitleyici ile yandığı motor

İçten yanmalı motorlar, yakıt'ın motor içinde yanma odası adı verilen sınırlı bir alan içinde yakılması ile oluşan basıncın, piston denen parçayı hareket ettirmesi ile oluşan makinelerdir.

<span class="mw-page-title-main">Pompa</span>

Pompa, genelde elektrik enerjisini hidrolik enerjiye çevirerek sıvıları veya bazen çamur gibi bulamaçları, mekanik güçle hareket ettiren makinadır.

<span class="mw-page-title-main">Türbin</span>

Türbin, bir akışkanın enerjisini işe çevirmek için kullanılan alettir. Türbin bir mil ve üzerinde kanatçıklardan oluşur. Kullanılan akışkana göre türbinin yapısı değişir. Çalışma prensibi şu şekildedir. Akışkan türbinin kanatçıklarına çarparak türbin miline hareket verir, hareket milin çıkışında mekanik işe dönüşür.

<span class="mw-page-title-main">Wankel motoru</span> Felix Wankel tarafından bulunmuş "Döner Motor" olarak da bilinen ekzantrik döner tasarıma sahip, yanma basıncını döner harekete çeviren içten yanmalı bir motor

Wankel motoru; ekzantrik döner tasarıma sahip, yanma basıncını döner harekete çeviren içten yanmalı bir motordur. Bu motorlarda diğer içten yanmalı motorlardan farklı olarak, kenarları yayvanlaştırılmış üçgen şeklinde döner pistonlar kullanılır. Güç iletiminin doğrudan piston üzerine bağlı mil yardımı ile gerçekleştirilmesi sayesinde yapıları diğer motorlara göre daha az karmaşıktır. Pistonlu motorların aksine tüm parçalar aynı yönde döner. Bu motorun diğer avantajları harekette akıcılık, kompaktlık ve daha yüksek güç-ağırlık oranıdır.

<span class="mw-page-title-main">Çözelti</span>

Çözelti ya da solüsyon, iki ya da daha fazla maddenin herhangi bir oranda bir araya gelerek oluşturdukları homojen karışımdır.

<span class="mw-page-title-main">Isı pompası</span> Isıyı bir alandan diğerine aktaran sistem

Gerçekte bir soğutma çevrimi olan ısı pompası çevriminin temel prensibini Nicolas Léonard Sadi Carnot 1824 yılında ortaya atmıştır. 26 yıl sonra 1850 yılında Lord Kelvin'in, soğutma cihazlarının ısıtma maksadı ile kullanılabileceğini ileri sürmesiyle ısı pompası uygulamaya girdi. II. Dünya Savaşı'ndan önce ısı pompasının geliştirilmesi ve kullanılır hâle getirilmesi için birçok mühendis ve bilim insanı bu alanda araştırmalar ve çalışmalar yaptı. Savaş yıllarında endüstri, imkânlarını daha acil problemlere yönelttiği için ara verilen bu çalışmalara savaştan sonra tekrar başlandı.

<span class="mw-page-title-main">Turboşarj</span> Motora daha fazla hava pompalayıp güç üreten parça

Turbo, içten yanmalı motorlarda pistonların hızlı hareketleri esnasında azalan hava emişini, yani pistonlara ihtiyaç duydukları havayı pompalayan atmosfer basıncına ek basınç yaratan bir mekanizmadır.

<span class="mw-page-title-main">Termik santral</span> ısı enerjisinin elektrik enerjisine dönüştürüldüğü santral türü

Termik santral, ana işletici makinesi buhar gücüyle çalışan güç santralıdır. Isıtılan su buhara dönüştürülerek bir elektrik üretecini süren buhar türbinini döndürmekte kullanılır. Türbinden geçen buhar Rankine çevrimi denilen yöntemle bir yüzey yoğunlaştırıcıda yoğunlaştırılırak geri suya dönüştürülür. Termik santralların tasarımları arasındaki en büyük farklılık kullandıkları yakıt tiplerine göredir. Bu tesisler ısı enerjisini elektrik enerjisine dönüştürmekte kullanıldığından bazı kaynaklarda enerji dönüşüm santrali olarak da geçer. Bazı termik santrallar elektrik üretmenin yanı sıra endüstriyel ve ısıtma amaçlı ısı üretimi, deniz suyunun tuzdan arındırılması gibi amaçlarla da kullanılır. İnsan üretimi CO2 emisyonunun büyük kısmını oluşturan fosil yakıtlı termik santralların çıktılarını azaltma yönünde yoğun çabalar harcanmaktadır.

<span class="mw-page-title-main">Boyle yasası</span>

Boyle yasası, gaz yasalarından biridir. 1662'de İrlandalı doğa filozofu Robert Boyle tarafından ilk defa basılmıştır. Yasa, Richard Towneley ve Henry Power tarafından Boyle'ın önüne getirilmiş ve Boyle da deneyleri yapıp sonuçları basmıştır. Robert Gunther ve bazı diğer otoritelere göre, deneyin aparatını hazırlayan Boyle'ın asistanı Robert Hooke, yasayı formülize eden insan olabilir. Hooke'un matematik konusundaki becerileri Boyle'ı aşıyordu. Hooke ayrıca, deneyler için gerekli olan vakum pompalarını da icat etmiştir. Fransız fizikçi Edme Mariotte (1620-1684), Boyle'dan bağımsız olarak formülü 1676'da bulmuştur. Bu nedenle de bu yasa, Mariotte ya da Mariotte-Boyle yasası olarak da isimlendirilebilir.

<span class="mw-page-title-main">Fren</span> Mekanik aygıtları yavaşlatan ya da tamamen durduran sistem

Fren, bir cismin hareketini durdurmak veya hızını azaltmak için kullanılan aygıt. Frenlerin çoğu döner mekanik parçalar üzerinde etki yaparak mekanik, hidrodinamik ya da elektriksel yolla kinetik enerji soğururlar.

Sürtünmeye dayalı fren sistemleri kullanıma bağlı olarak etkilerini kaybetme eğilimi gösterirler. Sürekli veya ağır şartlar altında kullanılan fren sistemi ısınarak etkisiz hale gelirler. Bunun önüne geçebilmek için daha güvenli olan hız kesiciler geliştirilmiştir.

<span class="mw-page-title-main">Ejektörlü pompa</span>

Ejektörlü pompa, bir enjektör veya fışkırtıcı kısılıp genişleyen bir memenin ventüri etkisini kullanarak, hareketli akışkanın basınç enerjisini; bir düşük basınç alanı yaratıp, hız enerjisine çevirerek; hareketli akışkanı çekip, emme akışkanının buna karışmasını sağlar ve hemen ardından bu karışmış akışkanları, hız enerjisini tekrar basınç enerjisine dönüştürerek, yeniden sıkıştıran pompa benzeri bir alettir.Hareketli akışkan gaz veya sıvı olabilir. Emme akışkanı bir gaz, bir sıvı, bir bulamaç, toz yüklü bir gaz akışı olabilir.

<span class="mw-page-title-main">Francis türbini</span>

Francis turbini James B. Francis tarafından geliştirilmiş bir su türbini çeşididir. Radyal ve eksenel akış çeşitlerinin bulunduğu bir iç akış reaksiyon türbinidir.

<span class="mw-page-title-main">Yağ basıncı</span>

Yağ basıncı, içten yanmalı motorların çoğunun uzun ömürlü olmasında önemli bir faktördür. Haricî yağlama sistemiyle, yağ pozitif bir deplasmanlı yağ pompası tarafından alınır ve yağ olukları yoluyla ana rulmanlar, büyük uç rulmanlar ve eksantrik mili yatakları veya denge mili yatakları gibi yataklara zorlanır. Kam lobları ve silindir duvarları gibi diğer bileşenler yağ jetleri ile yağlanır.

<span class="mw-page-title-main">Dalgıç pompa</span>

Dalgıç pompa pompa gövdesine yakın bir şekilde hava geçirmez olarak kapatılmış motorlu bir pompadır. Tüm tertibat pompalanacak akışkanın içine daldırılır. Bu tip pompanın asıl yararı pompayla sıvı yüzeyi arasındaki yükseklik farkıyla ilişkili bir problem olan pompa kavitasyonunu önlemesidir. Dalgıç pompalar vakum oluşturan ve atmosferik basınca dayanan jet pompalarının aksine sıvıyı yüzeye iter. Dalgıç pompalar elektrik motoru yerine kuyu içi hidrolik motorunu çalıştırmak için yüzeyden gelen basınçlı sıvıyı kullanır ve hareket sıvısı olarak da ısıtılmış su ile ağır yağ uygulamalarında kullanılır.

<span class="mw-page-title-main">İlerleyen boşluklu pompa</span> pozitif deplasmanlı pompa

İlerleyen boşluklu pompa, bir tür pozitif deplasman pompadır ve mono pompa, helezon pompa, burgulu pompa veya sonsuz vidalı pompa, olarak da bilinir. Rotoru döndürüldüğünde, bir dizi küçük, sabit şekilli, ayrık oyukların ilerlemesi yoluyla pompadan akışkanı aktarır. Bu, hacimsel akış hızının dönüş hızı ile orantılı olmasına ve pompalanan sıvıya uygulanan düşük kayma gerilmesi seviyelerine yol açar.

Bu liste farklı pompa türlerinin bir listesidir:

<span class="mw-page-title-main">Dişli pompa</span>

Dişli pompa, sıvıyı yer değiştirmeyle pompalamak için dişlilerin birbirine geçmesini kullanır.

<span class="mw-page-title-main">Eksenel kompresör</span>

Eksenel kompresör, gazları sürekli olarak basınçlandırabilen bir gaz kompresörüdür. Gazın veya çalışma sıvısının esas olarak dönme eksenine paralel veya eksenel olarak aktığı, dönen, kanat profili bazlı bir kompresördür. Bu, sıvı akışının kompresör boyunca bir "radyal bileşen" içereceği santrifüj kompresör, eksenel santrifüj kompresörler ve karışık akışlı kompresörler gibi diğer döner kompresörlerden farklıdır.