İçeriğe atla

Dönel simetri

Man Adası haritasındaki triskelion.

Dönel simetrisi olan bir cisim, belli bir dönmeden sonra aynı görünür. Bir cismin birden çok dönel simetriği olabilir; örneğin, yansıma ve ters çevrilmeyi saymazsak, Man Adası bayrağında görünen triskelion şeklinin üç adet dönel simetriği vardır, bir diğer deyişle üçlü simetriye sahiptir. Dönel simetri derecesi, bir şeklin başka bir kenarından veya köşesinden aynı görünmesi için kaç derece döndürülmesi gerektiği anlamına karşılık gelir.

Nitelikli tanımlama

Matematiksel olarak nitelikli bir tanımlama ile, dönel simetri, m-boyutlu Öklid uzayda bazı veya tüm dönmeler için olan simetridir. Dönme, doğrudan izometridir. Dolayısıyla, dönel simetri için bir simetri grubu, E+(m) 'nin bir altgrubudur (bakınız Öklid grubu)

Tüm noktalarda tüm dönmeler için simetri olması demek, tüm ötelemeler için öteleme simetrisi olmasıdır; bu durumda uzay homojendir ve simetri grubu E(m)'nin tamamıdır. Vektör alanları simetrisi için adapte edilmiş simetri kavramı ile, simetri grubu E+(m) olarak da ifade edilebilir.

Bir nokta etrafındaki dönmeler için olan simetri için o nokta orijin olarak kabul edilebilir. Bu dönmeler özel ortogonal grup SO(m)'yi oluştururlar,. Bu grup, determinantı 1 olan m×m ortogonal matrisler grubudur. m=3 için bu dönme grubudur.

Bu terimin bir diğer anlamı ile, bir cismin dönme grubu, E+(n) (direkt izometriler grubu) içindeki simetri grubudur. bir diğer deyişle, tam simetri grubu ile direkt izometriler grubunun arakesiti. Kiral cisimler için bu tam simetri grubu ile aynı şeydir.

Fizik kanunları eğer uzayın farklı doğrultuları için fark gözetmezlerse, "SO(3)-değişmez"dir. Noether's teoremi nedeniyle, fiziksel bir sistemin dönel simetrisi, açısal momentumun korunumu yasasına denktir. Ayrıca bakınız dönel değişmezlik.

N-li dönel simetri

2 boyutlu uzayda belli bir nokta için, veya 3 boyutlu uzayda belli bir eksen için n'-li dönel simetri (diğer deyişle n-katlı dönel simetri veya n. mertebeden ayrık dönel simetri) demek, 360°/n (180°, 120°, 90°, 72°, 60°, 51 3/7 °, vs.) kadar bir dönme o cismi değiştirmiyor demektir. "1-li simetri" (veya onun eşanlamlısı "1-katlı simetri") dönel simetri yok demektir; "2-katlı simetri" ise en basit simetridir, "temel simetrinin iki katı" anlamına gelmez.

n'li simetriyi kastetmek için kullanılan notasyon Cn veya kısaca "n" dir. Asıl simetri grubu, simetri noktası veya ekseni ve n'nin belirtilmesi ile ifade edilir. Her bir nokta veya simetri ekseni için soyut grup tipi, n. mertebeden devirli grup Zn'dir. Aynı şey için Cn notasyonu da kullanılsa da, geometrik ve soyut Cn terimlerinin ayrıdedilmesi gereklidir: aynı soyut grup tipinde geometrik olarak farklı olan başka simetri grupları olabilir, bakınız 3B'de devirli gruplar.

Temel bölgeler (İng fundamental domain) 360°/n'lik bir daire kesmesidir.

Ayrıca yansıma simetrisi olmayan örnekler:

  • n = 2, 180°: diad, bu simetriye sahip dörtgenler parallelkenarlardır; diğer örnekler: harflerden Z, N, S; renkler dikkate alınmazsa: yin ve yang sembolü.
  • n = 3, 120°: triad, triskelion, Borromean halkaları;
  • n = 4, 90°: tetrad, swastika
  • n = 6, 60°: heksad, raelian sembolü, yeni versiyonu
  • n = 8, 45°: oktad, Oktagonal mukarnas, computer-generated (CG), ceiling

Cn, n-kenarlı bir çokgenin 2B'de dönel grubudur, n-yüzlü bir piramidin de 3B'de dönel grubudur.

Dönel simetrisi olan ama yansıma simetrisi olmayan tipik bir 3 boyutlu cisme örnek, bir pervanedir.

Örnekler

C2 (başka örnekler)
C3 (başka örnekler)
 
C4 (başka örnekler)

Aynı noktadan geçen çoklu simetri eksenleri

Aynı noktadan geçen birden çok simetri eksenli ayrık simetri için, aşağıdaki olasılıklar mevcuttur:

  • n-li bir eksene ek olarak, n adet ikili eksen: 2n (n ≥2) dereceli Dn dihedral grupları. Bu, düzgün bir prizmanın veya bipiramidin dönme grubudur. Aynı notasyon kullanılsa da, geometrik ve soyut Dn ayırdedilmelidir: aynı soyut gruba ait olup geometrik olarak farklı olan diğer simetri grupları vardır, bakınız 3 boyutta dihedral simetri grupları.
  • 4×3-lü ve 3×2-li eksenler: düzgün bir dörtyüzlünün 12. mertebeden dönme grubu. Bu grup A4 almaşık grubu ile izomorfiktir.
  • 3×4-lü, 4×3-lü, and 6×2-li eksenler: Bir küpün ve bir sekizyüzlünün 24. mertebeden dönme grubu O. Bu grup, S4 simetri grubu ile izomorfiktir.
  • 6×5-li, 10×3-lü, and 15×2-li eksenler: bir onikiyüzlünün ve bir 20 yüzlünün 60. mertebeden dönme grubu I. Bu grup, almaşık grup A5 ile izomorfiktir. D3'ün 10 versiyonu ve D5'in 6 versiyonunu içerir (prizma ve antiprizma gibi dönel simetriler).

Platonik cisimler durumunda, 2-li dönel simetri eksenleri, karşı kenarların orta noktalarından geçer, bu eksenlerin sayıları kenarlar sayısının yarısıdır. Diğer eksenler karşı köşelerden ve karşı yüzlerin ortalarından geçer. Bunun tek istisnası dörtyüzlüdür, bunda 3-lü simetri eksenlerinin hepsi bir köşe ve karşı yüzün ortasından geçer.

Herhangi bir açı için dönel simetri

Herhangi bir açı için dönel simetri, iki boyutta, dairesel simetridir. Temel bölge yarı-doğrudur

Üç boyutta, silindirik simetri ile küresel simetri ayrımı yapılabilir: bunların birincisi, bir eksen etrafında dönme sonucunda bir değişiklik olmamasıdır, ikincisi ise, herhangi bir dönme sonucu bir değiklik olmamasıdır. Yani silindirik koordinat sistemi kullanılması durumunda açıdan bağımsız olma durumu vardır; temel bölge, eksenden başlayan bir yarı düzlemdir. Küresel koordinat sistemi kullanılması durumunda her iki açıdan bağımsız olma durumu vardır; temel bölge, sırasıyla, eksenden başlayan bir yarı düzlem ve ışınsal bir yarı-doğrudur.

Eksenel simetrik, bir cismin silindirik simetriye veya eksenel simetriye sahip olması durumu için kullanılan bir sıfattır. Yaklaşık olarak küresel simetriye sahip bir cisme örnek, Dünya'dır (yoğunluk ve kimyasal özellikler bakımından).

Dördüncü boyutta, bir düzlem etrafında sürekli veya ayrık dönel simetri olmasının karşılığı, her dik düzlemde, kesişme noktası etrafında, 2B dönel simetri olmasıdır. Dört boyutlu bir cisim, birbirine dik iki düzlem etrafında dönel simetriye sahip olabilir, yani iki dönel simetrili 2B şeklin kartezyen çarpımı ise. Bunun örneği duosilindir ve çeşitli duoprizmalardır.

Öteleme simetrili dönel simetri

Bir ilkel hücre içinde 2- ve 4-katlı dönel merkezlerin yerleşimi. Bir temel bölge sarı ile gösterilmiştir.
Bir ilkel hücre içinde 2-, 3- ve 6-katlı dönel merkezlerin tek başlarına veya bileşik olarak yerleşimi (6-katlı sembolünün 2- ve 3-katlı sembollerinin bir bileşimi olarak düşünebiliriz) ; yalnızca 2-katlı simetri durumunda, paralelkenarın şekli farklı olabilir. P6 simetri grubu durumu için temel bölge sarı gösterilmiştir.
Hexakis üçgensel döşemesi, p6 (renklerle) ve p6m (renksiz) dönel grup örneğidir; renkler dikkate alınmazsa doğrular yansıma eksenleridir; renkler dikkate alınırsa özel tür bir simetri eksenidir: yansıma renkleri değiştirir. Üç doğrultuda dörtgensel doğrular gridi ayırdedilebilir.

Öteleme simetrisi ile beraber 2-katlı dönel simetri, Frieze gruplarından biridir. İlkel hücre başına iki dönel merkez (İng. rotocenter) vardır.

Çifte öteleme simetrisi ile birlikte, dönel gruplar aşağıdaki duvar kağıdı gruplarından birine aittir. Bunlar, ilkel hücre başına simetri eksenleri ile listelenmiştir:

  • p2 (2222): 4×2-katlı; paralelogram-sal, diktörtgensel ve eşkenar dörtgensel bir latisin (kafesin) dönel grubu.
  • p3 (333): 3×3-katlı; herhangi bir latisin dönel grubu değildir (her latis başaşağı aynıdır ama bu simetri grubu için bu geçerli değildir). Bunun bir örneği, iki farklı renkte eşkenar üçgenler ile, düzgün üçgensel döşenmiş düzlemin dönel grubudur.
  • p4 (442): 2×4-katlı, 2×2-katlı; kare latisin dönel grubu.
  • p6 (632): 1×6-katlı, 2×3-katlı, 3×2-katlı; altıgensel latisin dönel grubu.
  • 2-katlı dönel merkezler (olası 4-katlı ve 6-katlı dönel merkezler de dahil olmak üzere), eğer varsalar, öteleme latisinin 1/2 çarpanıyla ölçeklenmiş bir latisin ötelemesini meydana getirirler. Bir boyutlu öteleme simetrisi durumunda, benzer bir özellik vardır ama "latis" terimi kullanılmaz.
  • 3-katlı dönel merkezler (olası 6-katlı dönel merkezler de dahil olmak üzere), eğer varsalar, düzgün bir altıgensel latis meydana getirirler. Bu latis, 30° (veya eşdeğer olarak 90°) döndürülmüş ve çarpanıyla ölçeklenmiş bir öteleme latisine eşittir.
  • 4-katlı dönel merkezler, eğer varsalar, bir düzgün karesel latis meydana getiriler. Bu latis, 45° döndürülmüş ve çarpanı ile ölçeklenmiş öteleme latisine eşittir.
  • 6-katlı dönel merkezler eğer varsa, düzgün bir altıgensel latis meydana getirirler. Bu latis, öteleme latisinin bir ötelemesine eşittir.

Bir latisin ölçeklenmesi, birim alandaki noktaların sayısını ölçek çarpanı ile böler. Dolayısıyla, ilkel hücre başına 2-, 3-, 4- ve 6- katlı dönel merkezlerin sayısı, sırasıyla, 4, 3, 2 ve 1'dir (4-katlıyı 2-katlının bir özel hâli olarak dahil edersek)

Bir nokta etrafında 3-katlı dönel simetri ve bir diğer nokta etrafında 2-katlı dönel simetri olması (veya, 3 boyutta, paralel eksenler için aynı durumun olması), p6 dönel grubu anlamına gelir, yani belli bir noktada (veya 3B için, belli bir eksende) çifte öteleme simetrisi ve altı-katlı dönel simetri vardır. Bir çift dönel merkez tarafından meydana gelen simetrideki öteleme uzaklığı, iki nokta arasındaki uzaklığın 2√3 katıdır.

Ayrıca bakınız

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Grup teorisi</span> simetrileri inceleyen matematik dalı

Grup teorisi veya Grup kuramı, simetrileri inceleyen matematik dalıdır. Simetri kuramı olarak da adlandırılabilir. Bir nesnenin simetrileri ile kast edilen, nesneye uygulandığında nesneye hiçbir etki olmamış gibi sonuç veren dönüşümlerdir. Her nesnenin en az bir simetrisi vardır: hiçbir şey yapmadan olduğu gibi bırakma dönüşümü. Bahsettiğimiz dönüşümlerin tersleri de vardır ve aradığımız özellikleri sağlarlar. Son olarak da dönüşümlerin art arda yapılması, birleşimli bir işlemdir. Bu üç koşula sırasıyla birim elemana sahip olma, elemenların tersi olma ve grup işleminin birleşmeli olması denir. Bu kavramların matematikte soyutlanması, üzerinde tersinebilir ve bileşme özelliğine sahip ikili bir işlemin tanımlı olduğu kümeler ile yapılır. Daha detaylı açıklamak gerekirse, grup nesnesi bir küme G ve onun üzerinde tanımlı bir işleminden oluşur. Bu operasyonun aşağıdaki şartları sağlaması gereklidir:

<span class="mw-page-title-main">Harita projeksiyonu</span>

Harita projeksiyonu, 3 boyutlu yeryüzünün matematiksel transformasyon ile iki boyutlu düzlemde temsil edilmesi işlemine denir. Harita projeksiyonunun yeryüzünün şeklini nasıl değiştirdiğini anlamanın kolay bir yolu merkezinde bir ışık kaynağı bulunduğu varsayılan yeryüzünün projeksiyon yüzeyi denen bir yüzeye iz düşürülmesidir.

<span class="mw-page-title-main">Koni</span>

Koni, matematikte, bir düzlem içindeki dairenin her noktasını, düzlem dışındaki bir noktaya birleştiren doğru parçalarının meydana getirdiği geometrik şekil.

<span class="mw-page-title-main">Eylemsizlik momenti</span> dönmeye karşı gösterilen zorluk

Atalet momenti veya eylemsizlik momenti, dönmekte olan bir cismin, dönme hareketine karşı durmasına eylemsizlik momenti denir. Eylemsizlik momenti, toplam dönme hareket gücüne karşı direnç oluşturur ve bu yüzden cisim, tam verimde dönemez.

Koordinat sistemi, geometride herhangi bir düzlemdeki (çokkatlıdaki) bir nokta veya başka bir geometrik elemanın konumunu tam olarak belirlemek için bir veya daha çok sayı ya da koordinat kullanılan bir sistemdir. Koordinatlar basit matematikteki reel sayılardan oluşur. Fakat soyut cebir gibi bazı alanlarda karmaşık sayılar veya elemanlardan oluşabilir. Koordinat sisteminin kullanılması, geometrik problemlerin sayısal problemlere ve tersine dönüştürülmesini sağlar. Bu analitik geometrinin temelidir.

<span class="mw-page-title-main">Yarıçap</span> merkezinden çevresine bir daire veya küre içinde bölüm veya yüzeyi ile uzunluğu

Yarıçap, bir daire veya kürenin özeğinin (merkezinin) çemberine olan mesafesidir. Çapın yarısına eşittir.

<span class="mw-page-title-main">Çok katlı</span>

Çok katlı, topolojide soyut topolojik bir uzay. Bu uzayın her noktasının çevresi Öklit uzayına benzer. Bununla birlikte, çok katlı bir Öklit uzayı olmak zorunda değildir. Genel yapısı, bu basit yerel yapısından çok daha karmaşık olabilir. Çok katlının boyutu, yerel olarak benzediği Öklit uzayının boyutu olarak tanımlanır. Herhangi bir topolojik uzay içinse boyut kavramından söz etmek genelde olası değildir.

<span class="mw-page-title-main">Dönme</span>

Dönme ya da dönüş; bir merkeze bağlı olarak dairesel hareket yapan cisimlerin hareketine denir. Üç boyutlu cisimler her zaman hayali bir dönüş eksen çizgisi etrafında döner. Eğer bu eksen cismin gövdesinden ve kütle merkezinden geçerse, cismin kendi etrafında döndüğü söylenir. Bir dış noktaya göre merkez seçilirse bu harekete dönüş veya orbital dönüş denir ve genellikle yerçekimi tarafından oluşturulur.

<span class="mw-page-title-main">Tesselasyon</span>

Matematikte bir döşeme, aralarında boşluk bırakmadan veya örtüşmeden bir düzlemi kaplayan düzlemsel şekiller kümesidir. Bu kavram daha yüksek boyutlar için de genellenebilir, bu genişletilmiş anlamı için döşeme yerine tesselasyon terimi kullanılır. Tesselasyon M. C. Escher'in eserlerinde sıkça görülebilir. Tesselasyona sanat tarihi boyunca, antik mimariden modern sanata kadar rastlanabilir.

<span class="mw-page-title-main">Dört yüzlü</span>

Geometride tetrahedron veya dört yüzlü, dört üçgen yüzden oluşan bir çokyüzlüdür (polihedron), her köşesinde üç üçgen birleşir. Düzgün dört yüzlü dört üçgenin eşkenar olduğu bir dört yüzlüdür ve Platonik cisimlerden biridir. Dörtyüzlü, dört yüzü olan tek konveks çokyüzlüdür. Tetrahedron isminin sıfat hali "tetrahedral"dır.

<span class="mw-page-title-main">Girih</span> İslam mimarisinde bir geometrik desen

Girih veya Farsça gereh sazi İslam sanatında mimari ve diğer el sanatlarında kullanılan, köşeli geometrik şekillerden oluşan, girift bir şerit örgü süs sanatıdır.

<span class="mw-page-title-main">Girih karoları</span>

Girih karoları, İslam sanatında görülen girih desenlerini oluşturmak için kullanılan, beş tip karodur. Karoların üzerinde bulunan çizgiler, karolar belli biçimlerde döşendiğinde yıldızlar, çokgenler ve karmaşık biçimde birbirini kesen şerit desenleri meydana gelir. Bu desenlerin örnekleri binalarda, kitap kapaklarında ve halılarda görülen bir süslemedir.

<span class="mw-page-title-main">Simetri (fizik)</span>

Fizikte eşbakışım (simetri), herhangi bir gözlenebilir büyüklük düşünüldüğünde belirli dönüşümler altında sistemin bazı özelliklerin değişmeyişini anlatır. Bir fizik siteminin eşbakışımı sistemin fizik veya matematik ile ilgili gözlemlenebilir veya içsel ve bazı etkenlerin değişmesi altında değişmeyen bir özelliğini ifade eder.

Fizikte ve matematik'te, Poincaré grubu,Henri Poincaré adına ithaf edilmiştir,Minkowski uzayzaman'ın izometri grubu'dur ."Uzay ve zaman"ı İlk kez Minkowski 1908'de derste kullanılmıştır.

Matematik ve kuramsal fizikte, ayna simetrisi Calabi-Yau dağıtımlar olarak adlandırılan geometrik cisimler arasındaki ilişkidir. Bu olay, şekilleri geometrik olarak farklı görünen altı boyutlu iki dağıtım için gerçekleşebilir ama yine de eğer bu boyutlar sicim kuramının gizli boyutları ise eşdeğerdirler. Bu durumda, altı boyutlu dağıtımlar için biri diğerinin aynası denir. Ayna simetrisi ilk olarak fizikçiler tarafından keşfedilmiştir. 1990'larda ne zaman ki Philip Candelas, Xenia de la Ossa, Paul Green ve Linda Parks ayna simetrisinin Calabi-Yau dağıtımında rasyonel dalgaların sayımında kullanılabileceğini, yani eskiden beri süre gelen problemlerin çözümünde kullanılabileceğini göstermiş; o zaman matematikçiler ayna simetrisiyle ilgilenmeye başlamışlardır. Ayna simetrisine orijinal yaklaşım kuramsal fizikteki kesin olmayan fikirlere dayansa da matematikçiler ayna simetrisindeki bazı matematiksel tahminlerde kesin ispat yapmışlardır. Bugün, ayna simetrisi soyut matematikte ana araştırma konusudur ve matematikçiler fizikçilerin görülerine dayanan ayna simetrisi için matematiksel bir anlayış geliştirmeye çalışmaktadırlar. Ayrıca, ayna simetrisi sicim kuramındaki hesaplamalar için temel bir araçtır. Ayna simetrisi için ana yaklaşımlar Maksim Kontseviç'in homolog ayna simetrisi programını ve Andrew Strominger, Shing-Tung Yau ve Eric Zaslow'un SYZ varsayımını içerir.

<span class="mw-page-title-main">Dönel cisim</span> Matematik terimi

Matematik, mühendislik ve imalat alanlarında kullanılan dönel cisim, bir eğriyi aynı düzlemde bulunan bir doğru etrafında döndürülerek elde edilen şekildir.

<span class="mw-page-title-main">Sabit bir eksen etrafında dönme</span> dönme hareketinin özel bir durumu

Sabit bir eksen etrafında dönme dönme hareketinin özel bir durumudur. Sabit eksen hipotez yönünü değiştirerek bir eksen olasılığını dışlar ve salınım devinim gibi olguları tarif edemez. Euler’in dönme teoremine göre, Aynı zamanda, sabit eksenler boyunca eş zamanlı rotasyon imkânsızdır. Eğer iki rotasyona aynı anda kuvvet uygulanırsa, rotasyonun yeni ekseni oluşur.

<span class="mw-page-title-main">Matematikte simetri</span> matematikte simetri kavramı

Simetri yalnızca geometride değil, matematiğin diğer dallarında da ortaya çıkar. Simetri bir tür değişmezliktir: matematiksel bir nesnenin bir dizi işlem veya dönüşüm altında değişmeden kaldığı özelliktir.

<span class="mw-page-title-main">Dönüşüm geometrisi</span>

Matematikte, dönüşüm geometrisi veya dönüşümsel geometri, geometrik dönüşüm gruplarına ve bunların içindeki değişmez özelliklere odaklanarak geometri çalışmalarına verilen matematiksel ve pedagojik yaklaşımın adıdır. Teoremleri ispatlamaya odaklanan Öklid geometrisinin klasik sentetik geometri yaklaşımına karşıdır.

<span class="mw-page-title-main">Mimari görselleştirme</span>

Mimari görselleştirme, bilgisayar donanımları ve modelleme yazılımları aracılığıyla bir mimari yapının üç boyutlu sureti olan ham modelinin oluşturulmasının ardından, bu modelin farklı yazılımlar aracılığıyla işlenerek realist bir görsel haline getirilmesidir.