İçeriğe atla

Dönel cisim

Eğri döndürülüyor. Cismi çevreleyen bu yüzey dönel yüzeydir.

Matematik, mühendislik ve imalat alanlarında kullanılan dönel cisim, bir eğriyi aynı düzlemde bulunan bir doğru (dönme ekseni) etrafında döndürülerek elde edilen şekildir.

Eğrinin dönme eksenini geçmediği kabul edilirse; dönel cismin hacmi, şeklin ağırlık merkezini merkez kabul eden dairenin uzunluğu ile şeklin alanının çarpımıdır (Pappus'un Ağırlık Merkezi Teoremi).

Temsili disk dönel cisimin üç-boyutlu bir hacim elemanıdır. Bu eleman (w uzunluğunda) bir doğru parçasının (r birim uzaklıkta) bir eksen etrafında döndürülmesiyle oluşturulur. Böylece πr2w birimlik silindirik hacim çevrelenmiş olur.

Hacim bulma

Dönel cismin hacmini bulmak için sıklıkla kullanılan iki integrasyon yöntemi, disk yöntemi ve kabuk yöntemidir. Bu yöntemleri uygulamak için, grafik çizmek en kolayıdır; dönme ekseni etrafında döndürülecek alan belirlenir; dönel cismin δx kalınlığına sahip disk şeklindeki bir diliminin ya da δx genişliğindeki silindirik bir kabuğun hacmi bulunur ve bu hacimlerin δx 0'a yakınsarkenki limit toplamı hesaplanır. Bu limit değeri, uygun bir integral hesaplanarak da bulunabilir.

Disk yöntemi

Y-ekseni etrafında disk integrasyonu

Disk yöntemi, çizilen dilimin dönme eksenine dik olduğu zaman yani dönme eksenine paralel integrasyon gerçekleştirilirken kullanılır.

ve eğrileri ve ve doğruları arasında kalan alan x-ekseni etrafında döndürülerek oluşan dönel cismin hacmi şöyle ifade edilir:

Eğer g(x) = 0 ise (yani bir eğri ile x-ekseni arasındaki alan döndürülüyorsa) formül şöyle indirgenir:

Bu yöntem üst noktası alt noktası olmak üzere yatay olarak uzanan çok ince bir dikdörtgen ile görselleştirilebilir. Bu dikdörtgen y-ekseni etrafında döndürülürse yüzük biçimini alır ( ise disk olur). Bu yüzüğün dış yarıçapı f(y) iç yarıçapı ise g(y) olur. R dış yarıçap (bu durumda f(y)), r iç yarıçap (bu durumda g(y)) olmak üzere bu yüzüğün alanı dir. Aralıktaki tüm alanları toplamak toplam hacmi verir. Bu yüzden her bir sonsuz küçük diskin hacmi dir. Bu disklerin a ve b aralığındaki sonsuz toplamı açıkça integral (1) şeklinde kendini gösterir.

Silindir yöntemi

Kabuk integrasyonu

Silindir yöntemi, çizilen dilimin dönme eksenine paralel olduğu zaman yani dönme eksenine dik integrasyon gerçekleştirilirken kullanılır.

ve eğrileri ve ve doğruları arasında kalan alan y-ekseni etrafında döndürülerek oluşan dönel cismin hacmi şöyle ifade edilir:

Eğer g(x) = 0 ise (yani bir eğri ile x-ekseni arasındaki alan döndürülüyorsa) formül şöyle indirgenir:

Bu yöntem yüksekliğine sahip ve dikey olarak uzanan çok ince bir dikdörtgen ile görselleştirilebilir. Bu dikdörtgen y-ekseni etrafında döndürülürse silindirik kabuk biçimini alır. r yarıçap (bu durumda x) h yükseklik (bu durumda ) olmak üzere bir silindirin yanal alanı dir. Aralıktaki tüm yüzey alanlarını toplamak toplam hacmi verir.

Parametrik form

Bir eğri parametrik formunda aralığında tanımlandığında, eğriyi x-ekseni veya y-ekseni etrafında döndürülerek oluşturulan dönel cisimlerin hacmi şöyle verilir:[1]

Aynı şartlar altında eğriyi x-ekseni veya y ekseni etrafında döndürülerek oluşturulan dönel cisimlerin yüzey alanları şöyle verilir:[2]

Notlar

  1. ^ Sharma, A.K. (2005). Application Of Integral Calculus. Discovery Publishing House. s. 168. ISBN 81-7141-967-4. , Chapter 3, page 168
  2. ^ Singh (1993). Engineering Mathematics. 6. Tata McGraw-Hill. s. 6.90. ISBN 0-07-014615-2. , Chapter 6, page 6.90

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev alma kuralları</span> Vikimedya liste maddesi

Türev, matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıda temel türev alma kuralları ve bazı fonksiyonların türev kuralları yer almaktadır.

<span class="mw-page-title-main">Dalga denklemi</span> kısmi diferansiyel bir denklem

Dalga denklemi fizikte çok önemli yere sahip bir kısmi diferansiyel denklemdir. Bu denklemin çözümlerinden, ses, ışık ve su dalgalarının hareketlerini betimleyen fiziksel nicelikler çıkar. Kullanım alanı, akustik, akışkanlar mekaniği ve elektromanyetikte oldukça fazladır. Genellikle elektromanyetik dalgalar gibi dalgalar için dalga denkleminin vektörel formülasyonu kullanılır. Bu formülasyonda elektrik alanları şeklindeki vektörlerle gösterebilir ve vektörün her bi bileşeni skaler dalga denklemine uymak zorundadır. Yani vektörel dalga denklemleri çözülürken her bir bileşen ayrı ayrı çözülür. Denklemin en basit hali aşağıdaki şekliyle gösterilir,

<span class="mw-page-title-main">İntegral tablosu</span> Vikimedya liste maddesi

İntegral, Matematikteki temel işlemlerden biridir. Bu maddede yaygın integrallerin hesaplanışını bulacaksınız.

<span class="mw-page-title-main">İş (fizik)</span>

Fizikte, bir kuvvet bir cisim üzerine etki ettiğinde ve kuvvetin uygulama yönünde konum değişikliği olduğunda iş yaptığı söylenir. Örneğin, bir valizi yerden kaldırdığınızda, valiz üzerine yapılan iş kaldırıldığı yükseklik süresince ağırlığını kaldırmak için aldığı kuvvettir.

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken X için olasılık yoğunluk fonksiyonu bir reel sayılı sürekli fonksiyonu olup f ile ifade edilir ve şu özellikleri olması gereklidir:

<span class="mw-page-title-main">Cauchy dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Cauchy-Lorentz dağılımı bir sürekli olasılık dağılımı olup, bu dağılımı ilk ortaya atan Augustin Cauchy ve Hendrik Lorentz anısına adlandırılmıştır. Matematik istatistikçiler genel olarak Cauchy dağılımı adını tercih edip kullanmaktadırlar ama fizikçiler arasında Lorentz dağılımı veya Lorentz(yen) fonksiyon veya Breit-Wigner dağılımı olarak bilinip kullanılmaktadır.

<span class="mw-page-title-main">Cauchy integral teoremi</span> Matematiksel analiz ile ilgili bir teorem

Matematiğin bir dalı olan karmaşık analizde, Augustin Louis Cauchy'nin ismine atfedilen Cauchy integral teoremi, karmaşık düzlemdeki holomorf fonksiyonların çizgi integralleri hakkında önemli bir teoremdir.

<span class="mw-page-title-main">Kalıntı teoremi</span>

Karmaşık analizdeki kalıntı teoremi veya bilinen bir diğer adıyla rezidü teoremi, analitik fonksiyonların kapalı eğriler üzerindeki çizgi integrallerini bulmak için kullanılan önemli bir araçtır ve ayrıca sık bir şekilde gerçel integralleri bulmak için de kullanılır. Cauchy integral teoremini ve Cauchy integral formülünü genelleştirir.

<span class="mw-page-title-main">Çizgi integrali</span>

Matematikte bir çizgi integrali, integrali alınan fonksiyonun bir eğri boyunca değerlendirildiği integraldir. Çeşitli farklı çizgi integralleri kullanılmaktadır. Kapalı eğrinin kullanıldığı durumlarda integrale kontür integrali denildiği de olmaktadır.

Karmaşık analizde kontür integrali veya kontür integrali almak karmaşık düzlemdeki yollar boyunca belli integralleri bulmak için kullanılan bir yöntemdir.

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

Gauss integrali, Euler–Poisson integrali olarak da bilinir, tüm reel sayılardaki ex2 Gauss fonksiyonunun integralidir. Alman matematik ve fizikçi Carl Friedrich Gauss'dan sonra adlandırlıdı. İntegrali şöyledir:

Catalan sabiti matematikte bazen kombinatorik'te tahminler için kullanılır.Tanımı

<span class="mw-page-title-main">Fresnel integrali</span>

Fresnel integrali, S(x) ve C(x), iki transendental fonksiyon'dur. Augustin-Jean Fresnel'e atfedilmiştir ve optikte kullanılmaktadır. Yakın alan Fresnel difraksiyon fenomeninde ortaya çıkar; aşağıdaki integral gösterimi ile tanımlanırlar:

<span class="mw-page-title-main">Beta fonksiyonu</span>

Matematik'te, beta fonksiyonu, Euler integrali'nin ilk türüdür,

Geometri'de, bir küre'nin hacmi için bir özel durum n-boyutlu Euclid uzayı içindeki bir kürenin n-boyutlu hacmidir.

<span class="mw-page-title-main">Gauss fonksiyonu</span>

Matematikte Gauss fonksiyonu, bir fonksiyon biçimidir ve şöyle ifade edilir:

Keyfi bir Gauss fonksiyonunun integrali şöyledir:

Matematikte, Green kuramı basit, kapalı bir C eğrisi etrafındaki çizgi integrali ile C eğrisinin sınırlandırdığı D düzlem bölgesi üzerindeki çift katlı integral arasındaki ilişkiyi verir. Teorem adını matematikçi George Green'den almıştır ve daha genel hâli olan Stokes teoreminin iki boyuttaki özel durumudur.

Teorik fzikte, Nordstrom kütleçekim kanunu genel göreliliğin bir öncülüdür. Açıkçası, Fin’li teorik fizikçi Gunnar Nordström tarafından 1912 de ve 1913 te önerilen iki ayrı teori vardır. Bunlardan ilki, hızla geçerliliğini yitirmiş, ancak ikinci, yerçekimi etkileri kavisli uzay-zaman geometrisi bakımından tamamen kabul eden. kütleçekim metrik teorisinin bilinen ilk örneği olmuştur. Nordstrom teorilerinin hiçbiri gözlem ve deney ile uyum içinde değildir. Bununla birlikte, ilkinin kısa sürede üzerindeki ilgiyi kaybetmesi, ikinciyi de etkilemiştir. İkinciden geriye kalan, kütleçekim kendine yeten relativistik teorisi. Genel görelilik ve kütleçekim teorileri için temel taşı niteliği görevi görmektedir. Bir örnek olarak, bu teori, pedagojik tartışmalar kapsamında özellikle yararlıdır.