İçeriğe atla

Dönüşüm geometrisi

Bir eksene karşı bir yansıma ve ardından birinciye paralel bir ikinci eksene karşı bir yansıma, bir öteleme ile sonuçlanan toplam bir hareketle sonuçlanır.
Bir eksene karşı bir yansıma ve ardından birinciye paralel olmayan ikinci bir eksene karşı bir yansıma, eksenlerin kesişme noktası etrafında bir dönme ile sonuçlanan toplam bir hareketle sonuçlanır.

Matematikte, dönüşüm geometrisi veya dönüşümsel geometri, geometrik dönüşüm gruplarına ve bunların içindeki değişmez özelliklere odaklanarak geometri çalışmalarına verilen matematiksel ve pedagojik yaklaşımın adıdır. Teoremleri ispatlamaya odaklanan Öklid geometrisinin klasik sentetik geometri yaklaşımına karşıdır.

Örneğin dönüşüm geometrisinde bir ikizkenar üçgenin özellikleri, belirli bir doğrunun yanındaki bir yansıma ile kendisine eşleştirildiği olgusundan çıkarımda bulunulur. Bu durum, üçgenlerin eşleşiklik ölçütleri bakımından klasik kanıtlarla çelişmektedir.[1]

Dönüşümleri, geometrinin temeli olarak kullanmak amacıyla ilk sistematik uğraş 19. yüzyılda Erlangen programı adı altında Felix Klein tarafından gerçekleştirilmiştir. Yaklaşık bir yüzyıl boyunca bu yaklaşım matematik araştırma çevreleriyle kısıtlı kalmıştır. 20. yüzyılda matematik eğitiminde yararlanmak için uğraşlar verilmiştir. Andrei Kolmogorov bu yaklaşımı (kümeler teorisi ile birlikte), Rusya'da geometri öğretim reformuna teklifinin bir ögesi olarak dahil etmiştir.[2] Bu çabalar, 1960'larda Yeni Matematik hareketi olarak bilinen matematik öğretiminin genel reformuyla bir sonuca ulaşmıştır.

Pedagoji

Dönüşüm geometrisinin incelenmesi, genellikle günlük yaşamda bulunan yansıma simetrisi çalışmalarıyla başlamaktadır. İlk gerçek dönüşüm, bir eksene karşı yansıma ya da bir çizgideki yansımadır. İki yansımanın bileşkesi, çizgiler kesiştiğinde bir dönme ile veya paralel olduklarında bir öteleme ile sonuçlanmaktadır. Böylelikle dönüşümler yoluyla öğrenciler Öklid düzlem izometrisi hakkında bilgi edinmektedirler. Örneğin, dikey bir çizgideki yansımayı ve yataya 45° eğimli bir çizgiyi düşünün. Bir bileşkenin saat yönünün tersine çeyrek dönüş (90°) gerçekleştirdiği, ters bileşkenin ise saat yönünde çeyrek dönüş gerçekleştirdiği gözlemlenebilir. Bu tür sonuçlar, dönüşüm geometrisinin sırabağımlı (yeri değiştirilemez) işlemleri bünyesinde barındırdığını göstermektedir.

Herhangi bir üçgende bulunan yedinci alan üçgeninin ispatında, bir çizgideki yansımanın eğlenceli bir uygulamasını ortaya çıkmaktadır.

Genç öğrencilere tanıtılan bir diğer dönüşüm ise benzeşimdir. Bununla birlikte, bir daire dönüşümündeki yansıma, düşük sınıflar için uygun görünmemektedir. Bu nedenle, ilkokul dönüşüm geometrisinden daha büyük bir çalışma alanı olan inversif geometri (tersinme geometrisi), genellikle üniversite öğrencilerine ayrılmıştır.

Somut simetri gruplarıyla yapılan deneyler, soyut grup teorisinin önünü açmaktadır. Diğer somut etkinlikler, dönüşüm geometrisini ifade etmek için karmaşık sayılar, hiperkarmaşık sayılar veya matrisler içeren hesaplamaları kullanmaktadır. Bu tür dönüşüm geometrisi dersleri, klasik sentetik geometri ile çelişen alternatif bir görüş sunar. Öğrenciler daha sonra analitik geometri ile karşılaştığında, koordinattaki dönme ve yansıma fikirlerini kolayca kavramaktadırlar. Bütün bu kavramlar, yansıma kavramının genişletildiği lineer cebre hazırlamaktadır.

Eğitimciler, anaokulundan liseye çocuklar için dönüşüm geometrisiyle ilgili projeler ve deneyler tasarlamışlardır ve bunların da bazı yararlarını göstermektedirler. Bazı tasarılarda öğrenciler, soyut dönüşümleri uygulamaya başlamadan önce, bir şeklin her noktasının eşlenmesinin tanımları yoluyla somut nesnelerle uygulama gerçekleştirmeye başlamaktadırlar.[3][4][5][6]

Rusya'da geometri derslerini yeniden yapılandırma girişiminde Kolmogorov, dönüşümlerin bakış açısından sunmayı teklif etmiş, böylece geometri dersleri kümeler teorisine göre yapılandırılmıştır. Bu durum, daha önce "eşleşik" olarak adlandırılan şekiller için, okullarda "eşit" teriminin ortaya çıkmasını beraberinde getirmiştir: Bir şekil bir nokta kümesi olarak görüldüğünden, yalnızca kendisine eşit olabilir ve üst üste binen iki üçgen izometrilerine göre eşleşik olduğu söylenir.[2]

Bir yazar, grup teorisinin dönüşüm geometrisindeki önemini şu şekilde dile getirmiştir:

Kitabımın dönüşüm gruplarına ilk giriş olarak hizmet edebilmesi amacıyla, ilk ilkelerden gereksinim duyduğum bütün grup teorisini geliştirmek için ve bunları daha önce hiç görmediyseniz soyut grup teorisi kavramlarını geliştirmek için biraz zorluk çektim.

Ayrıca bakınız

Kaynakça

  1. ^ "Georges Glaeser – The crisis of geometry teaching". 15 Mayıs 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 29 Aralık 2020. 
  2. ^ a b Alexander Karp & Bruce R. Vogeli – Russian Mathematics Education: Programs and Practices, Volume 5, pgs. 100–102
  3. ^ "R.S. Millman – Kleinian transformation geometry, Amer. Math. Monthly 84 (1977)". 3 Temmuz 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 29 Aralık 2020. 
  4. ^ "UNESCO - New trends in mathematics teaching, v.3, 1972 / pg. 8" (PDF). 3 Mart 2016 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 29 Aralık 2020. 
  5. ^ "Barbara Zorin – Geometric Transformations in Middle School Mathematics Textbooks". 22 Ağustos 2018 tarihinde kaynağından arşivlendi. Erişim tarihi: 29 Aralık 2020. 
  6. ^ "UNESCO - Studies in mathematics education. Teaching of geometry" (PDF). 7 Nisan 2012 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 29 Aralık 2020. 

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matematik</span> nicelik, yapı, uzay ve değişim gibi konularla ilgilenen bilim dalı

Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.

<span class="mw-page-title-main">Öklid geometrisi</span> Öklide atfedilen matematiksel-geometrik sistem

Öklid geometrisi, İskenderiyeli Yunan matematikçi Öklid’e atfedilen matematiksel bir sistemdir ve onun Elemanlar adlı geometri üzerine ders kitabında tarif edilmektedir. Öklid'in yöntemi, sezgisel olarak çekici küçük bir aksiyom seti varsaymaktan ve bu aksiyomlara dayanarak birçok başka önermeyi (teoremleri) çıkarmaktan ibarettir. Öklid'in sonuçlarının çoğu daha önceki matematikçiler tarafından ifade edilmiş olsa da, Öklid, bu önermelerin kapsamlı bir tümdengelimli ve mantıksal sisteme nasıl uyabileceğini gösteren ilk kişi oldu. Elemanlar, ilk aksiyomatik sistem ve resmi ispatın ilk örnekleri olarak ortaokulda (lise) hala öğretilen düzlem geometrisi ile başlar. Üç boyutlu katı geometrisi ile devam ediyor. Elemanlar’ın çoğu, geometrik dilde açıklanan, şimdi cebir ve sayı teorisi olarak adlandırılan şeyin sonuçlarını belirtir.

<span class="mw-page-title-main">Öklid</span> Yunan matematikçi, aksiyomatik geometrinin mucidi

Öklid (Grekçe: Εὐκλείδης Eukleídēs; MÖ 330 - 275 yılları arasında yaşamış, İskenderiyeli bir matematikçidir. Megaralı Öklid'den ayırmak için bazen İskenderiyeli Öklid olarak anılır, genellikle "geometrinin kurucusu" veya "geometrinin babası" olarak anılan bir Yunan matematikçiydi. Ptolemy I döneminde İskenderiye'de aktifti. Elemanlar, yayınlandığı zamandan 19. yüzyılın sonlarına veya 20. yüzyılın başlarına kadar matematik öğretimi için ana ders kitabı olarak hizmet veren, matematik tarihindeki en etkili çalışmalardan biridir. Elemanlar’da, Öklid, küçük bir aksiyom setinden, şimdi Öklid geometrisi olarak adlandırılan şeyin teoremlerini çıkardı. Öklid ayrıca perspektif, konik kesitler, küresel geometri, sayı teorisi ve matematiksel kesinlik üzerine eserler yazdı.

<span class="mw-page-title-main">Diferansiyel geometri</span>

Diferansiyel geometri türevin tanımlı olduğu Riemann manifoldlarının özellikleriyle uğraşan matematiğin bir alt disiplinidir. Başka bir deyişle, bu manifoldlar üzerindeki metrik kavramlarla uğraşır. Eğrilik, eğriler için burulma ve yüzeyler için değişik eğrilikler, araştırılan özellikler arasındadır.

En genel anlamda, soyut matematik, matematiğin soyut kavramlarını inceleyen bir kolu olarak adlandırılabilir. 18. yüzyıldan bu yana, soyut matematik matematiksel aktivitenin bir kategorisi olarak kabul edilmiştir. Bazen spekülatif matematik olarak da kategorize edildiği olur. Soyut matematik navigasyon, mühendislik, fizik, astronomi gibi çeşitli alanlarda kullanılmaktadır. Soyut matematiğe dair en güçlü öngörülerden biri de soyut matematiğin ille de uygulamalı matematik olmak zorunda olmadığıdır; soyut şeylerleri onların içsel doğasını anlayarak çalışmak onların doğada nasıl apaçık biçimde nasıl olduğu ile ilgili olmak zorunda değildir. Soyut matematik ve uygulamalı matematik arasındaki felsefi açı farkına rağmen pratikte birçok örtüşme noktalarının olduğu da aşikardır.

<span class="mw-page-title-main">Vladimir Arnold</span> Sovyet-Rus matematikçi

Vladimir İgoreviç Arnold Sovyet-Rus matematikçi. En iyi entegre sistemlerin stabilitesi ile ilgili Kolmogorov-Arnold-Moser teoremi ile tanınmasına rağmen, dinamik sistem teorisi, cebir, felaket teorisi, topoloji, cebirsel geometri, sezgisel geometri, diferansiyel denklemler, klasik mekanik dahil olmak üzere birçok alanda önemli katkılarda bulunmuştur., Hidrodinamik ve tekillik teorisi, ADE sınıflandırma problemini ortaya çıkarmak da dahil olmak üzere, ilk ana sonucundan bu yana - 19 yaşında 1957'de Hilbert'in on üçüncü probleminin çözdü. İki yeni matematik dalı kurdu: KAM teorisi ve topolojik Galois teorisi öğrencisi Askold Hovanskiy ile).

<span class="mw-page-title-main">Matematik tarihi</span> matematik biliminin tarihi

Matematik tarihi, öncelikle matematikteki keşiflerin kökenini araştıran ve daha az ölçüde ise matematiksel yöntemleri ve geçmişin notasyonunu araştıran bir bilimsel çalışma alanıdır. Modern çağdan ve dünya çapında bilginin yayılmasından önce, yeni matematiksel gelişmelerin yazılı örnekleri yalnızca birkaç yerde gün ışığına çıktı. MÖ 3000'den itibaren Mezopotamya eyaletleri Sümer, Akad, Asur, Eski Mısır ve Ebla ile birlikte vergilendirmede, ticarette, doğayı anlamada, astronomide ve zamanı kaydetmede/takvimleri formüle etmede aritmetik, cebir ve geometri kullanmaya başladı.

<span class="mw-page-title-main">Geometri tarihi</span> Geometrinin tarihsel gelişimi

Geometri, mekansal ilişkilerle ilgilenen bilgi alanı olarak ortaya çıkmıştır. Geometri, modern öncesi matematiğin iki alanından biriydi, diğeri ise sayıların incelenmesi yani aritmetikti.

Bu sayfa teoremlerin bir listesidir. Ayrıca bakınız:

<span class="mw-page-title-main">John Casey (matematikçi)</span>

John Casey saygın bir İrlandalı geometricidir. Batlamyus teoreminin bir uzantısı olan diğer dört çembere teğet olan bir çember üzerindeki Casey teoremi ile ünlüdür. Bununla birlikte, Öklid geometrisi üzerine birkaç yeni kanıt ve perspektifle katkıda bulundu. Emile Lemoine ile birlikte, çemberin ve üçgenin modern geometrisinin kurucu ortakları olarak kabul edilir.

<span class="mw-page-title-main">Felix Klein</span> Alman matematikçi, Erlangen Programının yazarı (1849-1925)

Christian Felix Klein, grup teorisi, karmaşık analiz, Öklid dışı geometri ve geometri ile grup teorisi arasındaki ilişkiler üzerine yaptığı çalışmalarla tanınan Alman matematikçi ve matematik eğitimcisi. Klein'ın geometrileri temel simetri gruplarına göre sınıflandıran 1872 Erlangen programı, döneminin matematiğinin büyük kısmının etkili bir senteziydi.

<span class="mw-page-title-main">Élie Cartan</span> Fransız matematikçi (1869 – 1951)

Élie Joseph Cartan, ForMemRS Lie grupları, diferansiyel sistemler ve diferansiyel geometri teorisinde temel çalışmalar yapan etkili bir Fransız matematikçi. Ayrıca genel göreliliğe ve dolaylı olarak kuantum mekaniğine önemli katkılarda bulundu. Yirminci yüzyılın en büyük matematikçilerinden biri olarak kabul edilmektedir.

Matematikte, integral geometri, belirli bir uzayın simetri grubu altındaki geometrik uzay değişmezi üzerindeki ölçü teorisidir. Daha yakın zamanlarda, anlam, bir geometrik uzaydaki fonksiyon uzayından başka bir geometrik uzaydaki fonksiyon uzayına değişmeyen dönüşümlerin bir görünümünü içerecek şekilde genişletildi. Bu tür dönüşümler genellikle Radon dönüşümü ve genellemeleri gibi integral dönüşümlerin biçimini alır.

Tarihte birleşik bir matematik teorisine ulaşmak için çeşitli girişimlerde bulunulmuştur. En büyük matematikçilerden bazıları, tüm konunun tek bir teoriye sığdırılması gerektiği görüşünü dile getirdiler.

<span class="mw-page-title-main">Geometrinin ana hatları</span> Geometriye genel bir bakış ve konu rehberi̇

Geometri, şekil, boyut, şekillerin göreceli konumu ve uzayın özellikleri ile ilgili sorularla ilgilenen bir matematik dalıdır. Geometri, en eski matematiksel bilimlerden biridir.

<span class="mw-page-title-main">Değişmez</span> nesnelere uygulanan dönüşümler için değişmeden kalan matematiksel nesnelerin özelliği

Değişmez, matematikte nesnelere belirli bir türdeki işlemler veya dönüşümler uygulandıktan sonra değişmeden kalan bir matematiksel nesnenin özelliğidir. Belirli nesne sınıfı ve dönüşüm türleri genellikle terimin kullanıldığı bağlam tarafından belirtilir. Örneğin, bir üçgenin alanı Öklid düzleminin izometrilerine göre değişmezdir. Bir denklik bağıntısına göre bir değişmez, her denklik sınıfında sabit olan bir özelliktir.

<span class="mw-page-title-main">Giovanni Girolamo Saccheri</span> İtalyan matematikçi

Giovanni Girolamo Saccheri, İtalyan Cizvit rahip, skolastik filozof ve matematikçidir.

<span class="mw-page-title-main">Projektif geometri</span>

Matematikte projektif geometri, projektif dönüşümlere göre değişmeyen geometrik özelliklerin incelenmesidir. Bu, temel Öklid geometrisine kıyasla projektif geometrinin farklı bir ortama, projektif uzaya ve seçici bir dizi temel geometrik kavrama sahip olduğu anlamına gelir. Temel sezgiler, projektif uzayın belirli bir boyut için Öklid uzayından daha fazla noktaya sahip olduğu ve fazladan noktaları Öklid noktalarına dönüştüren geometrik dönüşümlere izin verildiği ve bunun tersidir.

<span class="mw-page-title-main">Etkileşimli geometri yazılımları listesi</span> Vikimedya liste maddesi

Etkileşimli geometri yazılımı (İngilizce: Interactive geometry software ) veya dinamik geometri ortamları (İngilizce: dynamic geometry environments ), düzlem geometrisi başta olmak üzere geometrik yapıları oluşturmaya ve daha sonra bunları değiştirmeye olanak tanıyan bilgisayar programıdır. Çoğu etkileşimli geometri yazılımında, kişi birkaç nokta koyarak ve bunları çizgeler, daireler veya diğer noktalar gibi yeni nesneler tanımlamak için kullanarak inşaya başlar. Yapı, bir miktar oluştuktan sonra, kişi başladığı noktaları hareket ettirebilir ve yapının nasıl değiştiğini görebilir.

Aşağıda geometri'deki önemli gelişmelerin bir zaman çizelgesi verilmiştir: