İçeriğe atla

Dönüşüm (matematik)

SVG'de kodlanmış dört eşlemeden oluşan bir bileşke fonksiyonu

Dönüşüm, matematikte bir X kümesini kendisine eşleyen, genellikle bazı geometrik temellere sahip bir f fonksiyonudur, yani f : XX.[1] Örnekler, vektör uzaylarının doğrusal dönüşümlerini ve projektif dönüşümleri, afin dönüşümlerini ve dönmeler, yansımalar ve ötelemeler gibi belirli afin dönüşümlerini içeren geometrik dönüşümleri içerir.[2]

Kaynakça

  1. ^ Olexandr Ganyushkin; Volodymyr Mazorchuk (2008). Classical Finite Transformation Semigroups: An Introduction. Springer Science & Business Media. s. 1. ISBN 978-1-84800-281-4. 
  2. ^ "Transformations". www.mathsisfun.com. 18 Aralık 2005 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Ekim 2022. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Küre</span> geometrik şekil

Günlük kullanımıyla küre kusursuz simetriye sahip geometrik bir nesnedir, bir yüzeydir; üç boyutlu Öklit uzayında (R3) yatar.

<span class="mw-page-title-main">Konikler</span> bir huniyi ve düzlemi kesiştirince oluşan eğri

Konik kesit, eliptik veya dairesel bir çift taraflı koninin, düzlemle kesitinden meydana gelen eğriler. Bunlar, çember, elips, parabol ve hiperboldür.

Matematikte, Laplace dönüşümü, zaman tanım kümesinde tanımlı bir fonksiyonu, frekans tanım kümesinde tanımlı bir başka fonksiyona dönüştürmek amacıyla kullanılır.

Fourier dönüşümü, fizik, mühendislik ve matematikte, bir fonksiyonu, içerdiği frekansların belirtildiği bir biçime dönüştüren bir integral dönüşümüdür. Dönüşümün çıktısı, frekansa bağlı karmaşık değerli bir fonksiyondur. "Fourier dönüşümü" terimi, hem bu karmaşık değerli fonksiyon için hem de buna karşılık gelen matematiksel operasyon için kullanılmaktadır. Bu ayrımın netleştirilmesi gerektiğinde, Fourier dönüşümü bazen orijinal fonksiyonun frekans uzayında temsili olarak adlandırılır. Fourier dönüşümü, bir müzik akorunun sesini, onu oluşturan tonlara ayrıştırmaya benzer.

Doğrusal dönüşüm, bir fonksiyon çeşididir. T, M boyutlu bir vektörden N boyuta bir doğrusal dönüşüm ise, o zaman;

Koordinat sistemi, geometride herhangi bir düzlemdeki (çokkatlıdaki) bir nokta veya başka bir geometrik elemanın konumunu tam olarak belirlemek için bir veya daha çok sayı ya da koordinat kullanılan bir sistemdir. Koordinatlar basit matematikteki reel sayılardan oluşur. Fakat soyut cebir gibi bazı alanlarda karmaşık sayılar veya elemanlardan oluşabilir. Koordinat sisteminin kullanılması, geometrik problemlerin sayısal problemlere ve tersine dönüştürülmesini sağlar. Bu analitik geometrinin temelidir.

Lie işlemcisi, matematikte ve fizikte geniş bir kullanım alanı bulur. Bir cismin üzerine bu dönüşüm ile tanımlanan yöney (vektör) uzayı Lie cebri olarak adlandırılır. Adını Sophus Lie'den almıştır.

Ortalama veya merkezsel konum ölçüleri, istatistik bilim dalında ve veri analizinde kullanılan bir veri dizisinin orta konumunu, tek bir sayı ile ifade eden betimsel istatistik ölçüsüdür. Günlük hayatta ortalama dendiğinde genellikle kast edilen aritmetik ortalama olmakla beraber bu ölçünün çok belirli bazı dezavantajları söz konusudur. Bu yüzden matematik ve istatistikte, bir anakütle veya örneklem veri dizisi değerlerini temsil eden tek bir orta değer veya beklenen değer, olarak medyan (ortanca), mod (tepedeğer), geometrik ortalama, harmonik ortalama vb adlari verilen birçok değişik merkezsel konum ölçüleri geliştirilmiş ve pratikte kullanılmaktadır.

<span class="mw-page-title-main">Simetri</span>

Simetri, ilki belirsiz bir mükemmellik veya güzelliği yansıtan bir muntazamlık veya estetik olarak hoşa giden bir orantılılık ve denge duygusu olarak; ikincisi kesin ve iyi tanımlanmış biçemsel sistemin kurallarına göre gösterilebilen veya ispat edilebilen bir denge ve orantılılık kavramı veya "kendine benzeşme örneği"' olarak iki şekilde tanımlanır. Sıkışma mükemmelliğine ve tabii düzenine izafe eden biçim tanımlı geometrik ölçüsüne denir.

Matematikte deste, bir topolojik uzayın açık altkümelerine ilişkin yerel tanımlı verilerin sistematik olarak incelenmesini sağlayan bir araçtır.

Z dönüşümü, matematikte ve sinyal işlemede bir dönüşüm. Zaman tanım kümesinde gerçel ve sanal bileşenleri olan herhangi bir ayrık işareti, frekans tanım kümesindeki biçimine dönüştürür.

Matematikte, harmonik analiz alanında, kesirli Fourier dönüşümü (FRFT) Fourier dönüşümüne genelleştirilecek doğrusal dönüşümlerin bir ailesidir. Bu nedenle, -zaman ve frekans- arasında bir ara etki alanı için bir işlev dönüştürebilir - Fourier dönüşünde n'in bir tam sayı olması gerekmez n'inci kuvvet dönüşümü olarak da düşünülebilir. Onun uygulamaları faz geri alma ve örüntü tanıma için,filtre tasarımı ve sinyal analizi arasında değişir.

<span class="mw-page-title-main">Ayar teorisi</span> Fizikte bir teori

Ayar teorisi veya ayar kuramı, kuramsal fizikte temel etileşmeleri açıklar. Türkçede bazen yerelleştirilmiş bakışım kuramı olarak da geçer.

<span class="mw-page-title-main">Afin dönüşümü</span> koordinat dönüşümü

Geometride, afin dönüşüm veya ilgin dönüşüm, afin uzaylar arasında noktaları, düz çizgileri ve düzlemleri koruyan bir eşlemedir. Ayrıca, paralel çizgi kümeleri bir afin dönüşüm sonrası paralel kalır. Bir afin dönüşümde aynı doğru üzerinde duran noktalar arasındaki mesafe oranları korunmasına rağmen, çizgiler arasındaki açılar ve noktalar arasındaki mesafeler korunmayabilir.

Matematik'te, sonsuzküçük dönüşüm limiti sıfıra yaklaşan çok küçük bir dönüşümdür. Örneğin üç-boyutlu uzayda bir katı cismin sonsuzküçük dönüşünden bahsedilebilir. Geleneksel olarak 3×3'lük bir A çarpık-simetrik matrisi ile gösterilir. Bu tam anlamıyla bir dönüş matrisi değildir; ama bir ε değişkeninin çok küçük gerçel değerleri için

Matematikte doğrusal fonksiyon, her ne kadar bu terimle ile ifade edilse bile aslında şu iki farklı terimle ilgilidir:

<span class="mw-page-title-main">Orta Çağ İslam matematiği</span> yaklaşık 622 ile 1600 yılları arasında İslam medeniyeti altında korunan ve geliştirilen matematiğin bütünü

İslam'ın Altın Çağı'nda matematik, özellikle 9. ve 10. yüzyıllarda, Yunan matematiği ve Hint matematiği üzerine inşa edilmiştir. Ondalık basamak-değer sisteminin ondalık kesirleri içerecek şekilde tam olarak geliştirilmesi, ilk sistematik cebir çalışması (Hârizmî tarafından yazılan Cebir ve Denklem Hesabı Üzerine Özet Kitap adlı eser ve geometri ve trigonometride önemli ilerlemeler kaydedilmiştir.

Matematikte, integral geometri, belirli bir uzayın simetri grubu altındaki geometrik uzay değişmezi üzerindeki ölçü teorisidir. Daha yakın zamanlarda, anlam, bir geometrik uzaydaki fonksiyon uzayından başka bir geometrik uzaydaki fonksiyon uzayına değişmeyen dönüşümlerin bir görünümünü içerecek şekilde genişletildi. Bu tür dönüşümler genellikle Radon dönüşümü ve genellemeleri gibi integral dönüşümlerin biçimini alır.

<span class="mw-page-title-main">Dönüşüm geometrisi</span>

Matematikte, dönüşüm geometrisi veya dönüşümsel geometri, geometrik dönüşüm gruplarına ve bunların içindeki değişmez özelliklere odaklanarak geometri çalışmalarına verilen matematiksel ve pedagojik yaklaşımın adıdır. Teoremleri ispatlamaya odaklanan Öklid geometrisinin klasik sentetik geometri yaklaşımına karşıdır.

<span class="mw-page-title-main">Projektif geometri</span>

Matematikte projektif geometri, projektif dönüşümlere göre değişmeyen geometrik özelliklerin incelenmesidir. Bu, temel Öklid geometrisine kıyasla projektif geometrinin farklı bir ortama, projektif uzaya ve seçici bir dizi temel geometrik kavrama sahip olduğu anlamına gelir. Temel sezgiler, projektif uzayın belirli bir boyut için Öklid uzayından daha fazla noktaya sahip olduğu ve fazladan noktaları Öklid noktalarına dönüştüren geometrik dönüşümlere izin verildiği ve bunun tersidir.