İçeriğe atla

Curie yasası

Paramanyetik bir malzemede, malzemenin mıknatıslanması genel olarak uygulanan manyetik alanla orantılıdır. Fakat eğer malzeme ısıtılırsa, bu oran düşer: Belirli bir sıcaklığa kadar, mıknatıslanma sıcaklıkla ters orantılıdır. Bu kavram “Curie Yasası” tarafından kapsanmaktadır:

Formülde:

:En son elde edilen mıknatıslanma
:Manyetik Alan, birimiTesla
:Salt Sıcaklık, Birimi kelvin
:Malzemeye özgü Curie Katsayısı.

Bu ilişki Pierre Curie tarafından deneysel olarak; sonuçları, doğru tahmin edilmiş modellere uydurarak keşfedilmiştir. Bu yasa sadece yüksek sıcaklıklar ya da zayıf manyetik alanlar için geçerlidir. Aşağıdaki derivasyonların da gösterdiği gibi, mıknatıslanma düşük sıcaklığın karşıt limiti veya güçlü bir manyetik alanda doygunluğa ulaşır.

Kuantum Mekaniği ile Derivasyonu

Paramanyetik malzemenin mıknatıslanmasının sıcaklığın tersiyle gösterilmiş fonksiyonu.

Paramanyetik mıknatısların basit matematik modellemeri, birbirleriyle etkileşmeyen parçacıkların derlenmesine odaklanır. Her parçacığın ile kazandığı bir manyetik momenti vardır.Manyetik alan içerisindeki manyetik momentin enerjisi aşağıdaki formüldeki gibidir.

İki Durumlu parçacıklar(Spin1-2)

İşlemi basitleştirmek için, 2 durumlu parçacıklarla çalışacağız: bu sayede parçacık ya manyetik momente destek olacak ya da ona karşı çıkacak. Bu sayede manyetik momentin mümkün olan değerleri and dur. Böyleyken, parçacığın sadece 2 olası enerjisi olabilir:

Ve

Ne zaman birisi paramanyetik mıknatısın, mıknatıslanmasına baksa, ilk baktığı şey parçacığın dıştaki manyetik alanla kendisini aynı yöne getirip getiremediğidir. Diğer bir deyişle, mıknatıslanmanın(:) beklenen değerine bakılır

Burada konfigürasyonun olasılığı kendisinin Boltzmann faktörüyle verilir ve ayrılım fonksiyonu ise bize olasılıklar için gerekli olan düzgeleme katsayısını temin eder. (Bu sayede tüm olasılıklarım toplamı bir edebilir.) Bir parçacık için ayrılım fonksiyonu:

Bu sayede, bu basit durumda elimizde şu denklem kalır.

Bu tek bir parçacığın mıknatıslanmasıdır. Katı maddenin toplam mıknatıslanması aşağıdaki denklemle bulunur.

Yukarıdaki formül Langevin paramanyetik denklemi olarak bilinmektedir.

Pierre Curie, bu kanununun, deneyinde kullandığı yüksek sıcaklık ve düşük manyetik alanlar için de uygulanabilen yaklaşımını bulmuştur. Şimdi yüksek sıcaklık () ve düşük manyetik alanda() mıknatıslanmanın durumuna bakalım. Sıcaklık artıp manyetik alan azaldıkça, hiperbolik tanjantın argümanı azalmaktadır. Diğer bir şekilde görmek için:

Zaman zaman buna Curie rejimi de denmektedir. Şunu da biliyoruz ki, şayet , o zaman

Böylece

Denklemden çıkan Curie katsayısı: . Zıt durumdaysa(düşük sıcaklık, büyük manyetik alan), , nün maksimum değerine yaklaşır ki bu da tüm parçacıkların uygulanan manyetik alanla aynı hizaya girmesi demek.

Genel Durum

Parçacığın rastgele bir dönüşü(rastegel bir spin numarası) olduğunda, formül biraz daha karmaşık bir hal alır. Düşük manyetik alanlar veya yüksek sıcaklıklarda, dönüş(spin) Curie yasasını

[1]

İfadesi ile takip eder. Buarada , toplam açısal momentum kuantum sayısını ve is dönüşün g-faktörünü göstermektedir. (Öyle ki manyetik momenttir.). Bu daha genel formülü ve onun çıkarılışı için(yüksek manyetik alan ve düşük sıcaklığı da içeren haliyle) Brillouin fonksiyonu makalesine bakınız. Dönüş sonsuza yaklaştıkça, mıknatıslanma formülü bir sonraki kısımda hesaplanan klasik değere yaklaşmaktadır.

Klasik istatistiksel mekanikle olan çıkarım

Paramagnetonların(basit şekilde, paramanyetizmaya sebep olan parçacıklar), klasik bir biçimde, serbestçe dönen manyetik momentler olduğunu düşünürsek, alternatif bir yaklaşım da mümkündür. Böyle bir durumda, bu parçacıkların pozisyonlarını küresel koordinatlardaki açılarıyla belirlenebilir ve bir tanesinin enerjisi aşağıdaki formülle bulunur.

 : Manyetik Momentle, manyetik alan alan arasındaki; z koordinatını gösteriyor kabul edilen açı

Buna bağlı ayrılım fonksiyonu:

Değerin açıya() bağlı olmadığı gözüküyor. Bu sayede değişimini yapabiliriz:

Şimdi, mıknatıslanmanın z koordinatındaki elemanının beklenen değeri(diğerleri açı üzerinden alınan integral itibarıyla, beklendiği gibi sıfıra gidecek) aşağıdaki formüldeki gibidir.

İşlemi basitleştirmek için, üstteki formül nin türevi şeklinde yazılabilir

(Bu yaklaşım üstteki model için de kullabilir, fakat işlem zaten basit olduğundan çok faydalı değil.)

Çıkarımı devam ettirirsek:

: Langevin Fonksiyonu :

Bu fonksiyon küçük değerleri için tekilmiş gibi gözükebilir fakat değildir. Çünkü formüldeki tekil ifadeler birbirini götürür. Aslında, küçük değerler için bunun davranışı dır. Böylece Curie sınırı halen geçerli olmakla birlikte, Curie katsayısı 3 kat daha küçüktür. Benzer şekilde, fonksiyon, argümanının yüksek değerleri için, de doygunluğa ulaşır. Ters sınır da benzer bir şekilde düzelir.

Uygulamaları

Bu kavram, manyetik termometrelerin ki çok düşük sıcaklıkların ölçümü bu aletlerle yapılmaktadır, temelini oluşturmaktadır.

Ayrıca bakınız

  • Curie-Weiss Kanunu

Kaynakça

  1. ^ Kittel, Charles (2005). Introduction to Solid State Physics, 8th Edition. Wiley. ss. 304. ISBN 0-471-41526-X. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">İntegral tablosu</span> Vikimedya liste maddesi

İntegral, Matematikteki temel işlemlerden biridir. Bu maddede yaygın integrallerin hesaplanışını bulacaksınız.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Mie saçılması</span>

Mie saçılması veya Mie teorisi, düzlem bir elektromanyetik dalganın (ışık) homojen bir küre tarafından saçılmasını ifade eder. Maxwell denklemlerinin Lorenz–Mie–Debye çözümü olarak da bilinmektedir. Denklemlerin çözümü sonsuz bir vektör küresel harmonik serisi şeklinde yazılır. Saçılma ismini fizikçi Gustav Mie'den almaktadır; analitik çözümü ilk kez 1908 yılında yayınlanmıştır.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

<span class="mw-page-title-main">Gerçel kısım</span>

Matematikte, bir karmaşık sayısının gerçel kısmı, 'yi temsil eden gerçel sayıların sıralı çiftindeki ilk elemandır; yani ise veya denk bir şekilde ise, o zaman 'nin gerçel kısmı 'tir. İngilizce karşılığından esinlenerek, Re{z} ile veya Fraktür yazıtipindeki büyük R kullanılarak, yani {z} ile gösterilir. 'yi, 'nin gerçel kısmına gönderen karmaşık fonksiyon holomorf değildir.

<span class="mw-page-title-main">Liénard-Wiechert potansiyelleri</span>

Liénard-Wiechert potansiyelleri yüklü bir noktasal parçacığın hareketi esnasında oluşan klasik elektromanyetik etkiyi bir vektör potansiyeli ve bir skaler potansiyel cinsinden ifade eder. Maxwell denklemlerinin doğrudan bir sonucu olarak bu potansiyel relativistik olarak doğru, tam, zamana bağlı etkileri de içeren, noktasal parçacığın hareketine herhangi bir sınır konulmaksızın en genel durum için geçerli olan fakat kuantum mekaniğinin öngördüğü etkileri açıklayamayan elektromanyetik bir alan tanımlar. Dalga hareketi formunda yayılan elektromanyetik ışıma bu potansiyellerden elde edilebilir.

<span class="mw-page-title-main">Gauss fonksiyonu</span>

Matematikte Gauss fonksiyonu, bir fonksiyon biçimidir ve şöyle ifade edilir:

Kuantum harmonik salınıcı, klasik harmonik salınıcın benzeşiğidir. Rastgele seçilmiş potansiyeli denge noktası civarında harmonik potansiyele yakınsanabildiğinden nicem mekanğindeki en önemli model sistemlerden biridir. Dahası, nicem mekaniğinde kesin analitik çözümü olan çok az sistemden biridir.

Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.

Modern kuantum (nicem) mekaniğinden önce gelen eski kuantum (nicem) kuramı, 1900 ile 1925 yılları arasında elde edilen sonuçların birikimidir. Bu kuramın, klasik mekaniğin ilk doğrulamaları olduğunu günümüzde anladığımız bu kuram, ilk zamanlar tamamlanmış veya istikrarlı değildi. Bohr modeli çalışmaların odak noktasıydı. Eski kuantum döneminde, Arnold Sommerfield, uzay nicemlenimi olarak anılan açısal momentumun (devinimin) z-bileşkesinde nicemlenim yaparak önemli katkılarda bulunmuştur. Bu katkı, electron yörüngelerinin dairesel yerine eliptik olduğunu ortaya çıkarmıştır ve kuantum çakışıklık kavramını ortaya atmıştır. Bu kuram, electron dönüsü hariç Zeeman etkisini açıklamaktadır.

Fizikte, Kuantum mekaniğinde, eşevreli hal klasik harmonik salıngaca benzeyen kuantum harmonik salıngacının nicel hareketidir. Kuantum dinamiğinin Erwin Schrödinger tarafından Scrödinger denklemlerine çözüm ararken 1926 yılında türetilen ilk örneğidir. Örneğin, eşevre hali parçacığın salınımsal hareketini açıkları. Bu haller, John R. Klauderin ilk makalelerinde alçalma operatörü ve fazla tamamlanmış aile teşkili olarak özvektör adında tanımlanmıştır. Eşevre halleri,[ışığın kuantum kuramında ve diğer bozonik kuantum alanlarında Roy J. Glauber’in 1963 yılındaki çalışmaları tarafından geliştirilmiştir. Salınan alanın eşevre hali, klasik sinüs dalga hareketine benzeyen, devamlı lazer dalgası gibi olan kuantum halidir. Ancak, eşevre hali kavramı kayda değer biçimde genellenmiş ve sinyal sürecini niceleme, görüntü işleme alanlarında matematiksel fizikte ve uygulamalı matematik oldukça geniş ve önemli bir konu olmuştır. Bu hususta, kuantum harmonik salıngacı ile bağlantılı eşevreli haller genel olarak standart eşevreli haller ya da Gauss işlevi halleri olarak anılır.

Kuantum mekaniğinde, spin-yörünge etkileşimi(spin-yörünge etkisi, spin-yörünge bağlaşımı) parçacığın dönüşünün hareketiyle etkileşimidir. En çok bilinen örnek ise, elektronların dönüşü ile elektronların çekirdek etrafındaki dönüşünden dolayı oluşan manyetik alandan dolayı oluşan elektromanyetik etkileşim ve buna bağlı olan elektronların atomik enerji seviyesindeki değişim. Bu tayf çizgilerinden saptanabilir. Buna benzer bir diğer etki proton ve nötronların çekirdekte dönmesinden dolayı oluşan olan Açısal momentum ve güçlü nükleer kuvvet, nükleer kabuk modelindeki değişime neden olur. Spintronik alanında, yarı iletkenlerde ve diğer materyallerde spin yörünge etkileşimi yeni teknolojik gelişimler için araştırılmaktadır.

<span class="mw-page-title-main">Planck yasası</span> belirli bir sıcaklıkta termal denge durumunda bulunan bir kara cisim ışımasının yaydığı elektromanyetik radyasyonu ifade eden terim

Planck yasası belirli bir sıcaklıkta termal denge durumunda bulunan bir kara cisim ışımasının yaydığı elektromanyetik radyasyonu ifade eder. Yasa 1900 yılında Max Planck bu ismi önerdikten sonra isimlendirilmiştir. Planck yasası modern fiziğin ve kuantum teorisinin öncül bir sonucudur.

<span class="mw-page-title-main">Elektrozayıf etkileşim</span>

Parçacık fiziğinde elektrozayıf etkileşim, doğanın bilinen iki veya dört temel etkileşiminin birleşimin bir tanımıdır: elektromanyetizm ve zayıf etkileşim. Her gün düşük enerjilerde, bu iki kuvvet çok farklı oluşsa da, teori modelleri aynı kuvvetin iki farklı etkisi gibidir. Yukarıdaki birleştirme enerjisi, yaklaşık 100 GeV, tek bir elektrozayıf kuvvet oluşturabilir. Bu yüzden, eğer evren yeterince sıcaksa (Big Bang'den kısa bir sonra olan bir sıcaklık ortalama 1015 K), elektromanyetik kuvvet ve zayıf kuvvet birleşmiş bir elektrozayıf kuvvete dönüşür. Elektrozayıf dönem boyunca, zayıf kuvvet güçlü kuvvetten ayrılır. Kuark dönem boyunca, elektrozayıf kuvvet elektromanyetik ve zayıf kuvvetten ayrılır.

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

Bessel polinomları, matematikteki ortogonal polinomların bir dizisidir. Bessel polinomlarıyla ilgili birbirinden farklı ama birbiriyle yakından ilişkili çok sayıda tanım vardır. Matematikçiler tarafından tercih edilen tanım şu seriyle verilmektedir:

Trigonometride, trigonometrik özdeşlikler trigonometrik fonksiyonları içeren ve eşitliğin her iki tarafının da tanımlandığı değişkenlerin her değeri için doğru olan eşitliklerdir. Geometrik olarak, bunlar bir veya daha fazla açının belirli fonksiyonlarını içeren özdeşliklerdir. Bunlar üçgen özdeşliklerinden farklıdır, bunlar potansiyel olarak açıları içeren ama aynı zamanda kenar uzunluklarını veya bir üçgenin diğer uzunluklarını da içeren özdeşliklerdir.

Trigonometrik fonksiyonları tanımlamanın birkaç eşdeğer yolu vardır ve bunlar arasındaki trigonometrik özdeşliklerin kanıtları seçilen tanıma bağlıdır. En eski ve en temel tanımlar dik üçgenlerin geometrisine ve kenarları arasındaki orana dayanır. Bu makalede verilen kanıtlar bu tanımları kullanır ve dolayısıyla bir dik açıdan büyük olmayan negatif olmayan açılar için geçerlidir. Daha büyük ve negatif açılar için Trigonometrik fonksiyonlar bölümüne bakınız.

Trigonometrik fonksiyonların türevleri, trigonometrik bir fonksiyonun türevini yani bir değişkene göre değişim oranını bulmanın matematiksel sürecidir. Örneğin, sinüs fonksiyonunun türevi şeklinde yazılır, bu da sin(x) fonksiyonunun belirli bir açı x = a için değişim oranının o açının kosinüsü ile verildiği anlamına gelir.