İçeriğe atla

Corti organı

Corti organı, memelilerde kokleada yer alan, işitme için almaç görevi gören organ. Çeşitli epitel hücrelerden oluşan şerit şeklindeki bu organ, ses sinyallerinin sinirlerde aksiyon potansiyeline dönüştürülmesini sağlar.[1] Bu dönüştürme (transdüksiyon) süreci, iç kulaktaki yapıların titreyip kokleadaki sıvının yer değiştirmesine yol açmasıyla başlar. Bu Corti organındaki tüy hücrelerini hareket ettirip bu hücrelerde elektrokimyasal sinyal üretimine neden olur.[2]

Corti organı, 1851'de İtalyan anatomist Alfonso Giacomo Gaspare Corti tarafından keşfedildi.[3]

Yapı

Corti organı, iç kulakta yer alan kokleanın scala mediası içinde yer alır (bu yapı scala vestibuli ile scala tympani arasındadır). Baziller zar üzerine yerleşik olan Corti organı mekanik uyarılara hassas olan tüy hücrelerinden oluşur.[2] Üç sıra dış tüy hücresi, bir sıra iç tüy hücresi bulunur. Bu tüy hücreleri Deiters hücreleri tarafından birbirinden ayrılır ve desteklenir.[4]

İşlev

Corti organının işlevi ses sinyallerinin transdüksiyonu ve tüy hücrelerinin mümkün olduğunca fazla ses enerjisine maruz kalmasını sağlamaktır.[2]

Kaynakça

  1. ^ Hudspeth, A (2014). "Integrating the active process of hair cells with cochlear function". Nature Reviews Neuroscience. Cilt 15. ss. 600-614. doi:10.1038/nrn3786. PMID 25096182. 
  2. ^ a b c The Ear 8 Ekim 2018 tarihinde Wayback Machine sitesinde arşivlendi. Pujol, R., Irving, S., 2013
  3. ^ Betlejewski, S (2008). "Science and life – the history of Marquis Alfonso Corti". Otolaryngologia Polska. 62 (3). ss. 344-347. doi:10.1016/S0030-6657(08)70268-3. PMID 18652163. 
  4. ^ Malgrange, B; Van de Water, T.R; Nguyen, L; Moonen, G; Lefebvre, P.P (2002). "Epithelial supporting cells can differentiate into outer hair cells and Deiters' cells in the cultured organ of Corti". Cellular and Molecular Life Sciences. 59 (10). ss. 1744-1757. doi:10.1007/pl00012502. PMID 12475185. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Kulak</span> İşitme ve denge organı

Kulak (auris), işitme işlevini gören ve denge organını içinde bulunduran anatomik yapıdır. Vestibüler sistemi kullanarak işitmeyi ve vücut dengesini sağlar. Kulak; dış kulak, orta kulak ve iç kulak olacak şekilde üç kısımda incelenir.

<span class="mw-page-title-main">Kök hücre</span> İnsan vücudunu oluşturan, sınırsız bölünme, her türlü vücut hücresine dönüşme ve yeni görevler üstlenme imkânına sahip ana hücre

Kök hücre, mitoz bölünmeyle özelleşmiş hücre tiplerine farklılaşabilen ve daha fazla kök hücre üretmek için kendini yenileme yeteneğine sahip olan, bütün çok hücreli canlıların doku ve organlarını oluşturan ana hücre türleridir.

<span class="mw-page-title-main">Lenfatik sistem</span> lenf damarları ve lenfatik organlar ile lenfodik dokudan oluşan bir organ sistemi

Lenfatik sistem veya lenfoid sistem, omurgalılarda dolaşım sistemi ve bağışıklık sistemi'nin bir parçası olan bir organ sistemi'dir. Geniş bir lenf ağından, lenfatik damarlardan, lenf düğümlerinden, lenfatik veya lenfoid organlardan ve lenfoid dokulardan oluşur. Damarlar lenf adlı berrak bir sıvıyı kalbe doğru taşır.

<span class="mw-page-title-main">Sinir sistemi</span> dış çevre ile eylemleri koordine etmekten ve vücudun farklı bölümleri arasında hızlı iletişimden sorumlu canlı biyolojik sistemi

Sinir sistemi veya sinir ağı, canlıların içsel ve dışsal çevresini algılamasına yol açan, bilgi elde eden ve elde edilen bilgiyi işleyen, vücut içerisinde hücreler ağı sayesinde sinyallerin farklı bölgelere iletimini sağlayan, organların, kasların aktivitelerini düzenleyen bir organ sistemidir. Sinir sistemi iki bölümden oluşur: Merkezî sinir sistemi (MSS) ve çevresel sinir sistemi (ÇSS). MSS, beyin ve omurilikten oluşur. ÇSS, MSS'yi vücudun diğer tüm kısımları ile bağlayan uzun fiberlerden oluşur. ÇSS, motor nöronları, dolaylı istemli hareket, otonom sinir sistemi, sempatik sinir sistemi, parasempatik sinir sistemi, düzenli istemsiz işlevler ve enterik sinir sisteminden oluşur.

<span class="mw-page-title-main">İnsan vücudu</span> fiziksel ve kimyasal yapılardan oluşan sistemler bütünü

İnsan vücudu bir insanın tüm yapısıdır. Birlikte dokular ve ardından organları ve sonra organ sistemlerini oluşturan birçok farklı hücre türünden oluşur. Bunlar insan vücudunun homeostazisini ve canlılığını sağlar.

Biyolojide sinyal transdüksiyonu bir hücrenin bir cins sinyal veya uyarıyı başka birine dönüştürme sürecidir. Çoğu zaman bu, hücre içinde enzimlerin yürüttüğü biyokimyasal reaksiyonlarla gerçekleşir, bunlar birbirine ikincil habercilerle bağlanıp bir "ikincil haberci yolu" oluştururlar. Bu süreçler genelde hızlı olur, iyon akıları durumunda milisaniyeler mertebesinde, protein ve lipit aracılıklı kinaz çağlayanı (cascade) durumunda dakikalar mertebesinde sürer. Çoğu sinyal transdüksiyonu işleminde sinyal ilk uyarandan ileri doğru yayıldıkça bu olaylara katılan protein ve diğer moleküllerin sayısı da artar ve böylece küçük bir sinyal büyük bir tepki doğurabilir; buna "sinyal kaskadı" denir. Bakteri ve diğer tek hücreli organizmalarda, hücrenin sahip olduğu sinyal trasndüksiyon süreçleri onun çevresine nasıl tepki vereceğini belirler. Çok hücreli organizmalarda organizmanın bir bütün olarak çalışmasını sağlamak için bireysel hücrelerin davranışlarını koordine eden pek çok sinyal transdüksiyon süreci gerekmektedir. Tahmin edileceği üzere, bir organizma ne kadar karmaşıksa organizmanın sahip olduğu sinyal transdüksiyon süreçlerinin repertuvarı da o derece karmaşık olmak durumundadır. Dolasıyla hücresel seviyede hem iç hem de dış çevrenin duyumu sinyal transdüksiyonuna dayalıdır. Çoğu hastalık, örneğin diyabet, ateroskleroz, özbağışıklık (otoimmünite), kanser, sinyal transdüksiyon yollarındaki bozukluklardan kaynaklanır. Bu durum, sinyal transdüksiyonunun biyoloji kadar tıpta da olan önemini ortaya koyar.

Biyokimyada reseptör veya almaç, birbiriyle kısmen örtüşen iki anlama karşılık gelir.

<span class="mw-page-title-main">Lenf nodu</span> lenf sisteminin bir parçası olan birçok hücre çeşidini içeren bir organ yapısı

Lenf düğümü, lenf nodu veya lenf bezi, lenfatik sistemin ve adaptif bağışıklık sistemi'nin böbrek şeklinde bir ikincil lenfoid organ'ıdır.

Evrimsel gelişim biyolojisi, canlı türlerin ataları aralarındaki ilişkiyi belirlemek ve gelişimsel süreçlerin nasıl evrildiğini keşfetmek için farklı organizmaların gelişim süreçlerini karşılaştıran biyolojinin bir alt dalıdır. Bu anlamda evrimsel gelişim biyolojisi embriyonik gelişimin kökeni ve evrimini araştırarak tüylerin evrimi gibi gelişmeleri ve gelişim süreçlerini, yeni özelliklerin kazanılmasında ve ortaya çıkmasında nasıl etki ettikleri, gelişimsel plastisitenin evrimdeki rolü, ekolojik etkenlerin gelişime ve evrimsel değişime nasıl yol açtıkları, yakınsak evrimin ve homolojinin gelişimsel temelleri gibi konuları ele alır.

Yapay organ işlevini yitirmiş veya yitirmekte olan ve genellikle hayati önem taşıyan organların yerine bu organların işlevlerinin bir kısmını ya da tamamını geri kazandırmak amacıyla tasarlanan mekanik malzemelerden veya doku mühendisliği yoluyla üretilen organdır. Hayati organlardan herhangi birinin yetmezliği bu organının işlevlerinin restore edilmediği durumlarda hastanın ölümüne yol açar. Organ nakli ya başka bir insandan ya da insan yapımı yapay organla sağlanır. Hayati organlar oldukça karmaşık yapıya sahiptirler ve işlevlerinin yapay malzemeler tarafından taklit edilmesi zordur. Bu yüzden bütün yapay organlar işlevsellik bakkımından çeşitli ödünler verilerek tasarlanırlar. Diğer organların da, duyu organları vs., onarımı ya da yapay organ vasıtasıyla nakli yapılmaktadır. Son 30 yıldır yapay organlar insan vücudunun yaklaşık 40 farklı kısmına rutin olarak nakil edilmektedir.

<span class="mw-page-title-main">Glia hücresi</span> merkezi ve çevresel sinir sisteminde yer alan hücrelerin çoğunluğunu oluşturan ve sinir hücresi olmayan hücreler

Nörogliya, gliyal hücreler, yalnızca gliya ya da tutkal, merkezi ve çevresel sinir sisteminde yer alan hücrelerin çoğunluğunu oluşturan ve sinir hücresi olmayan hücreler. Miyelin üretimi ile beyin ve sinir sisteminin, otonom sinir sistemi gibi diğer bölümlerindeki sinir hücreleri için destek, koruma ve homeostaz sağlarlar.

<span class="mw-page-title-main">Schwann hücresi</span>

Schwann hücreleri, çevresel sinir sistemi (ÇSS) için miyelin oluşturur. İki tür Schwann hücresi vardır: miyelinli ve miyelinsiz. Miyelinli, etrafı Schwann hücreleri tarafından sarılan aksonları tanımlamak için kullanılan bir terimdir. Nöroglia, sinir sisteminde, ÇSS'deki sinir hücreleri için destek ve koruma sağlar.

Koklea veya kulak salyangozu, iç kulağın işitsel kısmıdır. İç kulağın içinde spiral şekilli bir boşluktur. İnsanlarda kendi ekseni etrafında 2,5 dönüş yapar. Kohlea; içinde perilenf sıvısı bulunan, üste vestibular, altta timpanik kanal bulunduran bir yapıdır. Bu kanalların arasında bulunan kohlear kanalda, daha yoğun olan endolenf sıvısı ve sinirsel iletimi başlatacak Corti organı bulunur. Corti organı; kulakta duyu almaçlarının en yoğun olduğu işitmeden sorumlu yerdir.

<span class="mw-page-title-main">Purkinje hücreleri</span>

Purkinje hücreleri ya da Purkinje nöronları beyincikte yer alan bir sınıf Gabaerjik nöronlar. Çek anatomist Jan Evangelista Purkyně'nin 1839 yılındaki keşfi sayesinde kaşifinin ismini almıştır.

Kemoreseptör, kimyasal bir maddeyi biyolojik bir sinyale dönüştüren bir özel duyusal reseptör hücresidir. Eğer kemoreseptör bir nöron, veya yakınlardaki bir sinir lifini aktive edebilen nörotransmitter formundaysa, bu sinyal aksiyon potansiyeli formunda olabilir. Daha genel olarak açıklamak gerekirse, kemosensör insan vücudunun iç veya dış ortamındaki toksik veya tehlikeli kimyasalları algılar ve bu bilgileri biyolojik olarak aktif toksinleri kandan atmak için merkezî sinir sistemine iletir ve daha fazla alkol ile sarhoş edici madde tüketimini önler.

<span class="mw-page-title-main">Bellek B hücresi</span>

Bellek B hücreleri, özel bir B hücresi türü. Bellek B hücreleri ilk bağışıklık yanıtında karşılaşılan antijenlere özel olarak oluşurlar ve uzun süre canlı kalırlar. Bu hücreler ilgili oldukları antijenin tekrar görülmesi hâlinde hızlı yanıt verebilirler.

<span class="mw-page-title-main">Vestibülokoklear sinir</span> kraniyal sinirler

Vestibülokohlear sinir sekizinci kranial sinir olarak bilinir ve iç kulaktan aldığı işitme ve denge ile ilgili bilgileri beyine aktarır.

Biyolojide, hücre sinyalizasyonu veya hücre iletişimi, hücrelerin çevresi ve kendisi arasında sinyalleri alma, işleme ve iletme yeteneğidir. Bakteriler, bitkiler ve hayvanlar gibi her canlı organizmadaki tüm hücrelerin temel bir özelliğidir. Bir hücrenin dışından kaynaklanan sinyaller mekanik basınç, voltaj, sıcaklık, ışık veya kimyasal sinyaller gibi fiziksel ajanlar olabilir. Kimyasal sinyaller hidrofobik veya hidrofilik olabilir. Hücre sinyalleri kısa veya uzun mesafelerde meydana gelebilir ve sonuç olarak otokrin, jukstakrin, intrakrin, parakrin veya endokrin olarak sınıflandırılabilir. Sinyal molekülleri çeşitli biyosentetik yollardan sentezlenebilir ve pasif veya aktif taşıma yoluyla ve hatta hücre hasarından sonra salınabilirler.

Mekanoseptör da denilen mekanoreseptör, mekanik basınç veya bozulmaya yanıt veren duyusal reseptör'dür. Mekanoreseptörler, mekanik basıncı, hayvanlarda merkezi sinir sistemine gönderilen elektrik sinyallerine dönüştüren duyu nöronları tarafından sinir sistemine bağlanır.

<span class="mw-page-title-main">Uyaran (fizyoloji)</span> fizyolojide, iç veya dış çevrede tespit edilebilir bir değişiklik

Fizyolojide uyaran, bir organizmanın iç veya dış çevresinin fiziksel veya kimyasal yapısında tespit edilebilir bir değişikliktir. Bir organizmanın veya organın uygun bir tepki verebilmesi için dış uyaranları tespit etme yeteneğine duyarlılık (uyarılabilirlik) denir. Duyusal reseptörler, deride bulunan dokunma reseptörleri veya gözdeki ışık reseptörlerinde olduğu gibi vücudun dışından ve kemoreseptörler ve mekanoreseptörlerde olduğu gibi vücudun içinden bilgi alabilir. Bir uyaran bir duyusal reseptör tarafından algılandığında, uyaran transdüksiyonu yoluyla bir refleks ortaya çıkarabilir. Bir iç uyaran genellikle homeostatik kontrol sisteminin ilk bileşenidir. Dış uyaranlar, savaş ya da kaç yanıtında olduğu gibi vücutta sistemik yanıtlar üretebilir. Bir uyaranın yüksek olasılıkla algılanabilmesi için güç seviyesinin mutlak eşiği aşması gerekir; eğer bir sinyal eşiğe ulaşırsa, bilgi merkezi sinir sistemine (MSS) iletilir, burada entegre edilir ve nasıl tepki verileceğine dair bir karar verilir. Uyaranlar genellikle vücudun tepki vermesine neden olsa da, bir sinyalin bir tepkiye neden olup olmayacağını nihai olarak belirleyen MSS'dir.