İçeriğe atla

Conway çember teoremi

A geometrical diagram showing a circle inside a triangle inside a larger circle.
Bir üçgenin altı eşmerkezli noktalı Conway çemberi (düz siyah), üçgenin iç teğet çemberi (kesikli gri) ve her iki çemberin merkezi (beyaz) olmak üzere aynı renkteki düz ve kesikli doğru parçaları eşit uzunluktadır.

Düzlem geometride, Conway çember teoremi, bir üçgenin her bir köşesinde kesişen kenarlar, karşı kenarın uzunluğu kadar uzatıldığında, ortaya çıkan üç çizgi parçasının altı uç noktasının merkezinin, üçgenin iç teğet çemberinin merkezi olduğunu ifade eder. Bu altı noktanın bulunduğu çembere, üçgenin Conway çemberi denir.[1][2][3] Teorem ve çember, İngiliz matematikçi John Horton Conway'in adını almıştır.

Ayrıca bakınız

  • John Horton Conway adını taşıyan şeylerin listesi

Kaynakça

  1. ^ "John Horton Conway". www.cardcolm.org. 20 Mayıs 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 29 Mayıs 2020. 
  2. ^ Eric W. Weisstein, Conway Circle (MathWorld)
  3. ^ Francisco Javier García Capitán (2013). "A Generalization of the Conway Circle" (PDF). Forum Geometricorum. 13: 191-195. 21 Nisan 2018 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 21 Ekim 2020. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Ceva teoremi</span> Öklid düzlem geometrisinde bir üçgenin kenar doğru parçası çiftlerinin çarpımlarının oranının bire eşit olduğunu belirten teorem

Ceva Teoremi, herhangi bir ABC üçgeni verildiğinde, A, B ve C'den üçgenin zıt kenarlarına doğru olan doğru parçalarının üçgenin her iki kenarında oluşan doğru parçası çiftlerinin oranlarının çarpımı 1'e eşit olduğunda tek noktada kesiştiğini belirtir. Teorem adını İtalyan matematikçi Giovanni Ceva'dan alır.

<span class="mw-page-title-main">Henri Brocard</span> Fransız meteorolog ve matematikçi (1845–1922)

Pierre René Jean Baptiste Henri Brocard, Fransız meteorolog ve özellikle geometriyle uğraşmış matematikçi. Brocard'ın kendi adını taşıyan Brocard noktaları, çemberi ile üçgenini ve bunların özelliklerini buluşu, en bilinen başarılarıdır.

<span class="mw-page-title-main">Brocard çemberi</span>

Brocard çemberi, geometride, bir üçgenin çevrel çemberinin merkezi ile simedyanı arasındaki doğru parçasını çap kabul eden çember. Brocard noktaları bu çemberin içinde yer alır. Brocard çemberi, adını Fransız matematikçi Henri Brocard'tan almıştır.

<span class="mw-page-title-main">Thales teoremi (çember)</span>

Çemberlerde Thales teoremi, alınan A, B ve C noktalarının bir çember üzerinde ve AC doğrusunun bu çemberin çapı olması durumunda, ABC açısının dik açı olacağını belirten geometri teoremi. Thales teoremi çevre açı kurallarının özel bir hâlidir. Adını Thales'ten alan teorem, genellikle ona atfedilir ancak bazı yerlerde Pisagor'la da ilişkilendirilir.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

Carnot teoremi, bir üçgenin iç teğet çemberi ve çevrel çemberinin yarıçaplarının uzunlukları ile çevrel çemberin merkezinden üçgenin üç kenarına olan mesafelerin toplamı arasındaki ilişkiyi göstermektedir. Fransız matematikçi Lazare Nicolas Marguerite Carnot tarafından bulunmuştur.

<span class="mw-page-title-main">Çember sıkıştırma teoremi</span>

Çember sıkıştırma teoremi, düzlemde iç kısımları ayrık olan çemberler arasındaki olası teğetlik ilişkilerini tanımlar. Dairesel sıkıştırma, içleri ayrık olan bağlantılı bir çember koleksiyonudur. Bir çember sıkıştırmasının kesişme çizgesi (grafı), her çember için bir tepe noktasına ve teğet olan her çember çifti için bir kenara sahip olan çizgedir. Çember sıkıştırma, düzlemde veya eşdeğer olarak küre üzerindeyse, kesişme çizgesine madeni para (coin) çizgesi denir; daha genel olarak, iç-ayrık geometrik nesnelerin kesişme çizgelerine, teğetlik çizgeleri veya temas çizgeleri denir. Madeni para çizgeleri her zaman bağlı, basit ve düzlemseldir. Çember sıkıştırma teoremi, bunların bir çizgenin madeni para çizgesi olması için tek gereklilik olduğunu belirtir:

<span class="mw-page-title-main">Clifford çember teoremi</span>

Geometride, adını İngiliz geometrici William Kingdon Clifford'dan alan Clifford teoremleri, çemberlerin kesişimleri ile ilgili teoremler dizisidir.

<span class="mw-page-title-main">Eş iç teğet çemberler teoremi</span>

Geometride, eş iç teğet çemberler teoremi bir Japon Sangaku'sundan türetilir ve aşağıdaki yapıya ilişkindir: belirli bir noktadan belirli bir çizgiye bir dizi ışın çizilir, öyle ki bitişik ışınlar ve taban çizgisi tarafından oluşturulan üçgenlerin iç teğet çemberleri eşittir. Çizimde eş mavi çemberler, açıklandığı gibi ışınlar arasındaki mesafeyi tanımlar.

<span class="mw-page-title-main">Batlamyus eşitsizliği</span>

Öklid geometrisinde, Batlamyus eşitsizliği, düzlemde veya daha yüksek boyutlu bir uzayda dört nokta tarafından oluşturulan altı uzunluğu ilişkilendirir. Herhangi bir A, B, C ve D noktası için aşağıdaki eşitsizliğin geçerli olduğunu belirtir:

.
<span class="mw-page-title-main">Euler teoremi (geometri)</span>

Geometride, Euler teoremi, üçgenin çevrel çemberinin merkezi ve iç teğet çemberinin merkezi arasındaki uzunluğunun aşağıdaki şekilde ifade edildiğini belirtir:

<span class="mw-page-title-main">Feuerbach noktası</span>

Üçgen geometrisinde, üçgenin iç çemberi ve dokuz nokta çemberi, üçgenin Feuerbach noktasında birbirine içten teğettir. Feuerbach noktası bir üçgen merkezidir, yani tanımı üçgenin yerleşimine ve ölçeğine bağlı değildir. Clark Kimberling'in Üçgen Merkezleri Ansiklopedisi'nde X(11) olarak listelenmiştir ve adını Alman geometrici Karl Wilhelm Feuerbach'tan almıştır.

<span class="mw-page-title-main">Beş çember teoremi</span> Öklid geometrisinde bir teorem

Geometride, beş çember teoremi, ortak bir altıncı çember üzerinde ortalanmış ve birbirlerini zincirler halinde kesen beş çember verildiğinde, ikinci kesişme noktalarını birleştiren doğruların, noktaları çemberlerin kendi üzerinde bulunan bir pentagram oluşturduğunu belirtir.

<span class="mw-page-title-main">Geometrik ortalama teoremi</span> Dik üçgenler hakkında bir teorem

Dik üçgen yükseklik teoremi veya geometrik ortalama teoremi, bir dik üçgendeki hipotenüs üzerindeki yükseklik uzunluğu ile hipotenüs üzerinde oluşturduğu iki doğru parçası arasındaki ilişkiyi tanımlayan temel geometrinin bir sonucudur. İki doğru parçasının geometrik ortalamasının yüksekliğe eşit olduğunu belirtir.

<span class="mw-page-title-main">Kesişen kirişler teoremi</span>

Kesişen kirişler teoremi veya sadece kiriş teoremi, bir çember içinde kesişen iki kiriş tarafından oluşturulan dört doğru parçasının ilişkisini tanımlayan temel geometrideki bir ifadedir. Her bir kirişteki doğru parçalarının uzunluklarının çarpımlarının eşit olduğunu belirtir. Öklid'in Unsurlarının 3. kitabının 35. önermesidir.

<span class="mw-page-title-main">Kesişen kesenler teoremi</span>

Kesişen kesen (sekant) teoremi veya sadece kesen (sekant) teoremi, kesişen iki sekant ve ilişkili çember tarafından oluşturulan doğru parçalarının ilişkisini açıklayan temel bir geometri teoremidir.

Dışbükey bir kirişler çokgeni, herhangi bir şekilde üçgenlere ayrıldığında ve bu şekilde oluşturulan her üçgene bir iç teğet çember çizildiğinde Japon teoremi, bu üçgenlerin iç teğet çemberlerinin yarıçapları toplamının, seçilen üçgenlemeden bağımsız bir şekilde sabit olduğunu belirtir. Bu teorem, Carnot teoremi kullanılarak kanıtlanabilir. Japon matematikçilerin eski bir geleneğine göre, bu teorem 1800'de tanrıları ve yazarı onurlandırmak için bir Japon tapınağına asılan tabletlere yazılmış bir Sangaku problemiydi.

Bu üçgen konuları listesi, geometriciler tarafından incelenen idealleştirmelerde veya Pascal üçgeni veya üçgen matrisler gibi üçgensel dizilerde olduğu gibi soyut olarak veya fiziksel uzayda somut olarak geometrik şekille ilgili şeyleri içerir. Kelimenin geometrik şekle atıfta bulunmadığı aşk üçgeni gibi metaforları içermez.

Adını Fransız matematikçi Joseph Diez Gergonne'dan alan Gergonne noktası, bir üçgenin iç kısmındaki ayırt edici bir noktadır.

<span class="mw-page-title-main">Fuhrmann çemberi</span> Öklid geometrisinde bir üçgen için tanımlanmış özel bir çember

Geometride, adını Alman matematikçi Wilhelm Fuhrmann (1833-1904)'dan alan bir üçgenin Fuhrmann çemberi, çap olarak ortosentr ile Nagel noktası arasındaki doğru parçasına sahip çemberdir. Bu çember, Fuhrmann üçgeninin çevrel çemberi ile aynıdır.