İçeriğe atla

Collatz sanısı

Collatz sanısı, Lothar Collatz tarafından ortaya atılan, 1'den büyük tüm doğal sayıların 1'e indirebildiğini anlatan bir konjektür. Ancak daha kesinleşememiştir. Çünkü; 268 ≈ 2.951×1020.[1] sayısına kadar olan sayılar, ancak kanıtlanabildi. Bu sayı ve daha yüksekleri ise daha hâlâ matematikçiler tarafından uğraşılmaktadır.

Problemin tanımı

Collatz sanısının kuralları şudur;

  • İfade olarak sayıya "x" diyelim.
  • Bu sayı eğer çift ise "x/2" dir.
  • Bu sayı eğer tek ise "3x+1" dir.

Bu sanıya göre tüm sayılar, 1'e kolayca indirilebilir.Bu sayının büyüklüğüyle alakalı değildir.

Örneğin;

  • "x=4" diyelim.O halde; 4-2-1 olur.
  • "x=7" diyelim.O halde; 7-22-11-34-17-52-26-13-40-20-10-5-16-8-4-2-1 olur. Bu sayı kuramında 7'nin vardığı en büyük sayı 52'dir.

Fonksiyon olarak ifade etmek gerekirse:

Kaynakça

  1. ^ Barina, D. Convergence verification of the Collatz problem. J Supercomput (2020). https://doi.org/10.1007/s11227-020-03368-x 5 Ağustos 2020 tarihinde Wayback Machine sitesinde arşivlendi.

İlgili Araştırma Makaleleri

Matematikte reel sayılar kümesi, Fransızca réel “gerçek” den gelmektedir. Oranlı sayılar kümesinin evrim sürecinden elde edilen bir varsayım kombinasyonudur. Reel sayılar kümesi sembolüyle gösterilir.

<span class="mw-page-title-main">Asal sayı</span> sadece iki pozitif tam sayı böleni olan doğal sayılardır

Bir asal sayı, yalnızca 1'den büyük olup kendisinden küçük iki doğal sayının çarpımı olarak ifade edilemeyen bir doğal sayıdır. 1'den büyük ve asal olmayan doğal sayılara bileşik sayı adı verilir. Örneğin, 5 bir asal sayıdır çünkü onu bir çarpım olarak ifade etmenin mümkün olan yolları, 1 × 5 veya 5 × 1, yalnızca 5 sayısını içermektedir. Ancak, 4 bir bileşik sayıdır çünkü bu, her iki sayının da 4'ten küçük olduğu bir çarpım şeklindedir. Asal sayılar, aritmetiğin temel teoreminden ötürü sayı teorisi alanında merkezi öneme sahiptir: 1'den büyük her doğal sayı, ya bir asal sayıdır ya da asal sayıların çarpımı olarak, sıralamalarından bağımsız bir şekilde, benzersiz olarak çarpanlarına ayrılabilir.

<span class="mw-page-title-main">İkiz asallar</span>

İkiz asallar, aralarındaki fark 2 olan asal sayılar. Örneğin 3-5, 5-7, 11-13 ikiz asallardır. 2-3 çifti hariç iki asal sayı arasındaki fark da zaten en az 2 olabilir.

Bileşik sayı, en az iki asal sayının çarpımı olarak yazılabilen pozitif tam sayıdır.

14 = 1 x 14 = 2 x 7.

RSA, güvenliği tam sayıları çarpanlarına ayırmanın algoritmik zorluğuna dayanan bir tür açık anahtarlı şifreleme yöntemidir. 1978’de Ron Rivest, Adi Shamir ve Leonard Adleman tarafından bulunmuştur. Bir RSA kullanıcısı iki büyük asal sayının çarpımını üretir ve seçtiği diğer bir değerle birlikte ortak anahtar olarak ilan eder. Seçilen asal çarpanları ise saklar. Ortak anahtarı kullanan biri herhangi bir mesajı şifreleyebilir, ancak şu anki yöntemlerle eğer ortak anahtar yeterince büyükse sadece asal çarpanları bilen kişi bu mesajı çözebilir. RSA şifrelemeyi kırmanın çarpanlara ayırma problemini kırmak kadar zor olup olmadığı hala kesinleşmemiş bir problemdir.

<span class="mw-page-title-main">Fibonacci dizisi</span> ardışık 2 teriminin toplamı bir sonraki terimi veren doğal sayı dizisi

Fibonacci dizisi, her sayının kendinden önceki ile toplanması sonucu oluşan bir sayı dizisidir. Ayrıca ardışık her iki sayının bölümü altın orana yakın bir değer vermektedir değer ne kadar büyük olursa altın orana o kadar yakın olur örneğin:55:34=1,617... 1, 2, 3, 5, 8, 13, 21, 34, 55, 89... şeklinde devam eden bu dizide sayılar birbirleriyle oranlandığında altın oran ortaya çıkar, yani bir sayı kendisinden önceki sayıya bölündüğünde altın orana gittikçe yaklaşan bir dizi elde edilir. Bu durumda genel olarak n'inci Fibonacci sayısı F(n) şu şekilde ifade edilir:

<span class="mw-page-title-main">HSL ve HSV</span> iki yaygın silindirik koordinat yeniden ifadesi

HSL ve HSV, 1970'lerde bilgisayar grafikleri araştırmacıları tarafından insan vizyonunun renk oluşturma özelliklerini algılama biçimiyle daha yakından uyumlu olması için tasarlanan RGB renk modelinin alternatif temsilleridir. Bu modellerde, her renk tonunun renkleri, alttan siyahtan üste beyaz arasında değişen nötr renklerin merkezi ekseni etrafında radyal bir dilim halinde düzenlenir. HSV temsili, farklı renkteki boyaların birbirine karışma şeklini, parlak renkli boyaların çeşitli renk tonlarını andıran doygunluk boyutu ve değişen miktarlarda siyah veya beyaz boya ile bu boyaların karışımına benzeyen değer boyutu modellenir. HSL modeli, Doğal Renk Sistemi (NCS) veya Munsell renk sistemi gibi daha algısal renk modellerine benzemeye çalışır ve Doygun renkleri 1⁄2 parlaklık değerinde bir dairenin etrafına yerleştirir, burada 0 veya 1 parlaklık değeri tamamen siyah veya beyazı temsil eder.

Bir asal kök modülü n sayılar teorisindeki modüler aritmetikten bir kavramdır. Eğer olan bir tam sayı ise, n formuna göre aralarında asal sayılar mod n'e göre çarpılarak, bir grup oluşturacak şekilde yapılan işlem, veya olarak gösterilir. Bir asal sayı için ve ise, bu grup ancak ve ancak veya 'ya denktir. Bu döngüsel grubun bir üreteci asal kök modülü n veya 'in bir asal elemanı'dır şeklinde tanımlanır.

İstatistik bilimi için mod bir veri kümesi içinde en sık görülen değerdir. Tepedeğer olarak da adlandırılır. Bazı kullanım alanlarında, özellikle eğitim alanında, örnek veriler çok kere puan olarak anılmakta ve örnek mod değerine ise mod puanı adı verilmektedir.

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.

abc sanısı veya abc konjektürü sayılar teorisindeki bir sanı yani konjektürdür. 1985'te Joseph Oesterlé ve David Masser tarafından ortaya atılmıştır. Biri diğer ikisinin toplamı şeklinde ifade edilen üç tam sayının özellikleri üzerine kurulmuştur. Problemi çözmek için açık bir strateji bulunmadığı halde, sanı bazı ilginç sonuçları sayesinde tanınmıştır.

<span class="mw-page-title-main">Tetrasyon</span>

Matematikte, tetrasyon, üslü sayıdan sonra gelen ilk aşırı işlecin tekrarlı üssüdür. Tetrasyonun İngilizce karşılığı olan tetration kelimesi ilk kez matematikçi Reuben Louis Goodstein tarafından, tetra- (dört) ve iteration (tekrar)dan türetilerek kullanılmaya başlandı. Tetrasyon çok büyük sayıların gösterimi için kullanıldı. Fakat birkaç pratik uygulaması vardır. Bu yüzden sadece saf matematik incelenir. Burada aşırı işlecin ilk dört örneğin gösteriliyor. Tekrasyon dördüncüsüdür:

  1. toplama
    Normal bilinen toplama işlemi.
  2. çarpma
    genellikle temel işlemlerden birini ifade eder. Fakat doğal sayılar gibi özel durumlar için kendine n kere eklenen a olabilir.
  3. üs alma
    a nın kendisi ile n kere çarpılması.
  4. tetrasyon
    a 'nın kendisiyle n kere üssünün alınması.

ElGamal imza şeması Ayrık Logaritmanın hesaplanmasının zorluğuna dayanan bir dijital imzadır. Tahir el-Cemal tarafından 1984 yılında bulunmuştur. Açık anahtarlı kriptosistemi ve imza şeması ayrık logaritmaya dayanmaktadır.

Rabin şifreleme sistemi, Rabin kriptoloji veya Rabin kriptosistemi, güvenliği RSA'daki gibi tam sayı çarpanlarına ayırmanın zorluğu üzerine kurgulanmış olan asimetrik bir kriptografik tekniktir. Bununla birlikte, Rabin kriptosisteminin avantajı, saldırgan tam sayıları verimli bir şekilde çarpanlarına ayıramadığı sürece, seçilmiş bir düz metin saldırısına karşı hesaplama açısından güvenli olduğu matematiksel olarak kanıtlanmıştır, oysa RSA için bilinen böyle bir kanıt yoktur. Rabin fonksiyonunun her çıktısının dört olası girdiden herhangi biri tarafından üretilebilmesi dezavantajı; her çıktı bir şifreli metinse, olası dört girdiden hangisinin gerçek düz metin olduğunu belirlemek için şifre çözmede ekstra karmaşıklık gerekir.

Goldwasser–Micali (GM) kriptosistemi 1982 yılında Shafi Goldwasser ve Silvio Micali tarafından geliştirilmiş bir asimetrik anahtar şifreleme algoritmasıdır. GM standart kriptografik varsayımlar altında güvenliği kanıtlanmış ilk probabilistik açık anahtar şifreleme yöntemidir. Bununla birlikte başlangıç düz metinden yüzlerce kez daha geniş olan şifreli metinler olduğundan verimli bir kriptosistem değildir. Kriptosistemin güvenlik özelliğini kanıtlamak için Shafi Goldwasser ve Silvio Micali anlamsal güvenliğin geniş alanda kullanılan bir tanımını önerdiler.

Merkle-Hellman kripto sistemi, 1978 yılında Martin Hellman ve Ralph Merkle tarafından geliştirilen ilk açık anahtarlı kriptosistemlerden biridir. RSA'dan daha hızlı gerçekleştirilebilmesine rağmen Adi Shamir tarafından 1982'de güvensiz olduğu gösterilmiştir.

<span class="mw-page-title-main">Jacobi sembolü</span>

Jacobi sembolü Legendre sembolünün bir genellemesidir. 1837 yılında Jacobi tarafından tanıtılan bu teori, modüler aritmetik ve sayılar teorisinin diğer dallarındandır ama ana kullanımı hesaplamada sayılar teorisi, özellikle asallık testi ve tam sayıları çarpanlara ayırma olarak kriptografide oldukça önemlidir.

<span class="mw-page-title-main">İşaret (matematik)</span>

Matematikte işaret kavramı, sıfırdan farklı her bir reel sayının pozitif veya negatif olduğunu belirtir. Her ne kadar bazen işaretli sıfır kullanılsa bile, sıfırın kendisi işaretsizdir. Matematik ve fizikte kullanılan reel sayıların toplamaya göre tersini ifade etmek için işaret değiştirme işlemi yapılır.

Matematikte Euler sayıları, Taylor serisi açılımıyla tanımlanan bir En tam sayı dizisidir..

<span class="mw-page-title-main">Çin kalan teoremi</span>

Matematikte Çin kalan teoremi, bir n tamsayısının birkaç tam sayıya bölümünden kalanlar biliniyorsa, n'in bu sayıların çarpımına bölümünden kalanın bulunabileceğini belirtir. Buradaki koşul, n'e bölümlerinden kalanlarını bildiğimiz sayıların birbirleriyle aralarında asal olmaları gerekliliğidir.