İçeriğe atla

Ceva teoremi

Ceva teoremi, durum 1: Üç doğru ABC üçgeninin içindeki bir O noktasında kesişir.
Ceva teoremi, durum 2: Üç doğru ABC üçgeninin dışındaki bir O noktasında kesişir.

Ceva Teoremi, herhangi bir ABC üçgeni verildiğinde, A, B ve C'den üçgenin zıt kenarlarına doğru olan doğru parçalarının üçgenin her iki kenarında oluşan doğru parçası çiftlerinin oranlarının çarpımı 1'e eşit olduğunda tek noktada kesiştiğini belirtir. Teorem adını İtalyan matematikçi Giovanni Ceva'dan alır.

Teoremin açıklaması

Ceva teoremi, düzlem geometrisindeki üçgenlerle ilgili bir teoremdir. Bir ABC üçgeni verildiğinde, köşelerden (ABC üçgeninin herhangi bir kenarı üzerinde olmayan) ortak bir O noktasına AO, BO ve CO doğrularının çizilmesine ve sırasıyla D, E ve F'de karşı kenarları kesmesine izin verin. (AD, BE ve CF doğru parçaları cevians olarak bilinir.). Daha sonra işaretli doğru parçalarının uzunluklarını kullanarak,

Başka bir deyişle, XY uzunluğu, X'in Y'nin sağında veya solunda olmasına göre doğrunun bazı sabit yönlerinde pozitif veya negatif olarak alınır. Örneğin, AF/FB, F A ve B arasında olduğunda pozitif değerde, aksi takdirde ise negatif olarak tanımlanır.

Ceva teoremi, açılar, alanlar ve uzunluklar kavramları kullanılmadan ifade edilebilmesi ve kanıtlanabilmesi anlamında afin geometri'nin bir teoremidir (eşdoğrusal olan iki doğru parçasının uzunluklarının oranı hariç). Bu nedenle, herhangi bir cisim üzerinde herhangi bir afin düzlemdeki üçgenler için doğrudur.

Teoremin biraz uyarlanmış bir tersi de doğrudur: D, E ve F noktaları sırasıyla BC, AC ve AB üzerinde seçilirse,

AD, BE ve CF kesişen veya üçü de paralel doğrulardır. Tersi genellikle teoremin bir parçası olarak dahil edilir.

Teorem genellikle onu 1678 tarihli De lineis rectis adlı eserinde yayınlayan Giovanni Ceva'ya atfedilir . Ancak, on birinci yüzyılda Zaragoza kralı Yusuf Al-Mu'taman ibn Hűd tarafından çok daha önce kanıtlanmıştı.[1]

Şekillerle ilişkili olarak Ceva'nın isminden türetilen birkaç terim vardır: cevian (AD, BE, CF doğruları O'nun cevianlarıdır), cevian üçgeni (DEF üçgeni O'nun cevian üçgenidir); cevian yuvası, anti-cevian üçgen, Ceva eşleniği. (Ceva, Chay'va olarak telaffuz edilir; cevian, chev'ian olarak telaffuz edilir.)

Teorem, Menelaus teoremine çok benzer, çünkü denklemleri sadece işaret bakımından farklılık gösterir.

İspatlar

Teoremin birkaç kanıtı verilmiştir.[2][3] Aşağıda iki kanıt verilmiştir.

İlki, üçgen alanların yalnızca temel özelliklerini kullanan çok temel bir ispattır.[2] Bununla birlikte, O noktasının konumuna bağlı olarak birkaç durum dikkate alınmalıdır.

İkinci ispat, barisentrik koordinatları ve vektörleri kullanır, ancak bir şekilde daha doğaldır ve duruma bağlı değildir. Dahası, herhangi bir cisim üzerinde herhangi bir afin düzlemde işe yarar.

Üçgenlerin alanlarını kullanarak

Birincisi, sol tarafın işareti pozitiftir çünkü oranların üçü de pozitiftir, O'nun üçgenin içinde olduğu durum (üstteki şekil) veya biri pozitif ve diğer ikisi negatif, O'nun üçgenin dışında olduğu durum (alttaki şekil bu duruma bir örneği göstermektedir).

Büyüklüğü kontrol etmek için, belirli bir yüksekliğe sahip bir üçgenin alanının tabanıyla orantılı olduğuna dikkat edin. Yani

Bu nedenle,

(A ve O, BC'nin zıt kenarlarındaysa, eksi işaretini artı ile değiştirin.) Benzer şekilde,

ve

Bu üç denklemin çarpılması gerektiği gibi aşağıdaki ifadeyi verir:

Teorem, Menelaus teoremi kullanılarak da kolayca kanıtlanabilir.[4] ACF üçgeninin BOE transversalinden,

ve BCF üçgeninin AOD transversalinden,

Teoremi elde etmek için bu iki denklem birbirine bölünür.

Teoremin tersi, bir sonuç olarak ortaya çıkar.[2] D, E ve F noktaları sırasıyla BC, AC ve AB doğruları üzerinde verilsin. AD ve BE O noktasında kesişsin ve FCO’nun AB ile kesiştiği nokta olsun. Daha sonra teoreme göre denklem D, E ve F′ için de geçerlidir. İkisi karşılaştırılırsa,

Ancak en fazla bir nokta bir doğru parçasını belirli bir oranda kesebilir, böylece F = F′ elde edilir.

Barisentrik koordinatları kullanarak

Eşdoğrusal olmayan üç nokta A, B, C ve aynı düzleme ait bir O noktası verildiğinde, O'nun A, B, C'ye göre barisentrik koordinatları şeklinde benzersiz üç sayıdır, öyle ki

ve her X noktası için,

olur. (bu ok gösteriminin tanımı ve daha fazla ayrıntı için Afin uzayına bakınız.)

Cava teoremi için, O noktasının üçgenin iki köşesinden geçen herhangi bir doğruya ait olmadığı varsayılır. Bu şu anlama gelir;

X için AB ve OC doğrularının F kesişimi alınırsa (şekillere bakın), son denklem şu şekilde yeniden düzenlenebilir:

Bu denklemin sol tarafı, CF doğrusuyla aynı yöne sahip bir vektördür ve sağ taraf, AB doğrusuyla aynı yöne sahiptir. A, B ve C eşdoğrusal olmadığından bu doğrular farklı yönlere sahiptir. Denklemin iki üyesinin sıfır vektörüne eşit olduğu ve

Buradan,

burada sol taraf oranı, eşdoğrusal doğru parçaları AF ve FB uzunluklarının işaretli oranıdır.

Aynı mantık ile;

Ceva teoremi, son üç denklemin çarpımını alarak hemen elde edilebilir.

Genellemeler

Teorem, barisentrik koordinatlar kullanılarak daha yüksek boyutlu simplekslere genelleştirilebilir. Her bir tepe noktasından zıt (n-1) yüz (faset) üzerindeki bir noktaya bir ışın olarak n-simpleks'in bir cevianını tanımlayın. Öyleyse cevianlar, ancak ve ancak köşelere bir kütle dağılımı atanabildiğinde, her cevianın, kütle merkezinde zıt faset ile kesiştiği durumlarda kesişir. Üstelik cevianların kesişme noktası simpleksin kütle merkezidir.[5][6]

Routh'un teoremi, tek noktada kesişmedikleri takdirde üç cevianın oluşturduğu üçgenin alanını verir. Ceva teoremi, alanı sıfıra eşitleyip çözerek de buradan elde edilebilir.

Düzlemdeki genel çokgenler için teoremin analojisi, on dokuzuncu yüzyılın başlarından beri bilinmektedir.[7] Teorem ayrıca sabit eğriliğin diğer yüzeylerindeki üçgenlere de genelleştirilmiştir.[8]

Teorem ayrıca küresel ve hiperbolik geometri için iyi bilinen bir genellemeye sahiptir, oranlardaki uzunlukları sırasıyla sinüsleri ve hiperbolik sinüsleri ile değiştirir.

Ayrıca bakınız

Konuyla ilgili yayınlar

  • Hogendijk (1995). "Al-Mutaman ibn Hűd, 11the century king of Saragossa and brilliant mathematician". Historia Mathematica. 22: 1-18. doi:10.1006/hmat.1995.1001. 

Dış bağlantılar

Kaynaklar

  1. ^ Geometry: Our Cultural Heritage. Springer. 2010. s. 210. ISBN 3-642-14440-3. 
  2. ^ a b c "Ch. 1 §7 Ceva's Theorem". Pure Geometry. Clarendon Press. 1905. 
  3. ^ Alfred S. Posamentier and Charles T. Salkind (1996), Challenging Problems in Geometry, pages 177–180, Dover Publishing Co., second revised edition.
  4. ^ Follows "Art. 986". Inductive Plane Geometry. D.C. Heath & Co. 1902. 
  5. ^ Landy (Aralık 1988). "A Generalization of Ceva's Theorem to Higher Dimensions". The American Mathematical Monthly. 95 (10): 936-939. doi:10.2307/2322390. 
  6. ^ Wernicke (Kasım 1927). "The Theorems of Ceva and Menelaus and Their Extension". The American Mathematical Monthly. 34 (9): 468-472. doi:10.2307/2300222. 
  7. ^ Grünbaum (1995). "Ceva, Menelaus and the Area Principle". Mathematics Magazine. 68 (4): 254-268. doi:10.2307/2690569. 
  8. ^ Masal'tsev (1994). "Incidence theorems in spaces of constant curvature". Journal of Mathematical Sciences. 72 (4): 3201-3206. doi:10.1007/BF01249519. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Üçgen</span> üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimi

Bir üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimidir. Üçgene müselles ve üçbucak da denir.

<span class="mw-page-title-main">Menelaus teoremi</span> Bir üçgenin her bir kenar doğrusundan tepe noktası olmayan birer nokta olmak üzere üç noktanın, ancak ve ancak her üç kenar doğrusu üzerinde belirledikleri işaretli oranların çarpımı -1 ise eş doğrusal olduğunu belirten Öklid geometri

İskenderiyeli Menelaus'a izafe edilen Menelaus teoremi düzlemsel geometride üçgenler üzerine bir teoremdir. , ve noktalarından oluşan üçgeninde , ve doğruları üzerinde bulunan ve üçgenin köşelerinden ayrık , ve noktalarının aynı doğru üzerinde olabilmesi ancak ve ancak:

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

Thales teoremi veya temel orantı teoremi olarak da bilinen kesişme teoremi, kesişen iki çizginin bir çift paralelle kesilmesi durumunda oluşturulan çeşitli çizgi parçalarının oranları hakkındaki temel geometride önemli bir teoremdir. Benzer üçgenlerdeki oranlarla ilgili teoreme eşdeğerdir. Geleneksel olarak Yunan matematikçi Thales'e atfedilir.

<span class="mw-page-title-main">Açıortay teoremi</span> Bir üçgeni bölen iki parçanın göreli uzunlukları hakkında

Geometride açıortay teoremi, bir üçgenin kenarının karşı açıyı ikiye bölen bir çizgiyle bölündüğü iki parçanın göreli uzunluklarıyla ilgilidir. Göreli uzunluklarını, üçgenin diğer iki kenarının göreli uzunluklarına eşitler.

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

<span class="mw-page-title-main">Brahmagupta teoremi</span>

Geometride, Brahmagupta teoremi, eğer bir kirişler dörtgeni ortodiyagonal ise, o zaman köşegenlerin kesişme noktasından bir kenara çizilen dikmenin karşı kenarı daima ikiye böldüğünü belirtir. Adını Hint matematikçi Brahmagupta'dan (598-668) almıştır.

<span class="mw-page-title-main">Bottema teoremi</span>

Bottema teoremi, Hollandalı matematikçi Oene Bottema tarafından matematik literatürüne kazandırılmış olan düzlem geometride bir teoremdir.

<span class="mw-page-title-main">Kelebek teoremi</span> Bir çemberin başka iki kirişinin üzerinden çizilen kirişin orta noktası hakkındaki teorem

Kelebek teoremi, Öklid geometrisinin klasik bir sonucudur ve aşağıdaki gibi ifade edilebilir:

Carnot teoremi, bir üçgenin iç teğet çemberi ve çevrel çemberinin yarıçaplarının uzunlukları ile çevrel çemberin merkezinden üçgenin üç kenarına olan mesafelerin toplamı arasındaki ilişkiyi göstermektedir. Fransız matematikçi Lazare Nicolas Marguerite Carnot tarafından bulunmuştur.

<span class="mw-page-title-main">Carnot teoremi (konikler)</span>

Adını Fransız matematikçi Lazare Carnot'dan alan Carnot'un teoremi, konik kesitler ve üçgenler arasındaki bir ilişkiyi tanımlar.

<span class="mw-page-title-main">Carnot teoremi (dikmeler)</span>

Adını Fransız matematikçi Lazare Carnot'dan alan Carnot teoremi, üçgenin (uzatılmış) kenarlarına dik olan üç doğrunun ortak bir kesişme noktası için gerek ve yeter koşulu tanımlar. Teorem ayrıca Pisagor teoreminin bir genellemesi olarak düşünülebilir.

<span class="mw-page-title-main">De Gua teoremi</span>

Adını Fransız matematikçi Jean Paul de Gua de Malves'den alan De Gua teoremi, Pisagor teoreminin üç boyutlu bir analojisidir.

<span class="mw-page-title-main">Harcourt teoremi</span>

Geometride Harcourt teoremi, kenar uzunluklarının bir fonksiyonu olarak ve kendi iç teğet çemberine teğet olan rastgele bir doğrudan köşelerinin dikey uzunluklarının bir fonksiyonu olarak üçgenin alanı ile ilgili bir formüldür. Teorem adını İrlandalı bir profesör olan J. Harcourt'tan almıştır.

<span class="mw-page-title-main">Kesişen kirişler teoremi</span>

Kesişen kirişler teoremi veya sadece kiriş teoremi, bir çember içinde kesişen iki kiriş tarafından oluşturulan dört doğru parçasının ilişkisini tanımlayan temel geometrideki bir ifadedir. Her bir kirişteki doğru parçalarının uzunluklarının çarpımlarının eşit olduğunu belirtir. Öklid'in Unsurlarının 3. kitabının 35. önermesidir.

<span class="mw-page-title-main">Kesişen kesenler teoremi</span>

Kesişen kesen (sekant) teoremi veya sadece kesen (sekant) teoremi, kesişen iki sekant ve ilişkili çember tarafından oluşturulan doğru parçalarının ilişkisini açıklayan temel bir geometri teoremidir.

<span class="mw-page-title-main">Viviani teoremi</span> Herhangi bir iç noktadan bir eşkenar üçgenin kenarlarına olan en kısa mesafelerin toplamının üçgenin yüksekliğinin uzunluğuna eşit olduğunu belirten Öklid geometrisi teoremi

Adını Vincenzo Viviani'den alan Viviani teoremi, herhangi bir iç noktadan bir eşkenar üçgenin kenarlarına olan en kısa mesafelerin toplamının üçgenin yüksekliğinin uzunluğuna eşit olduğunu belirtir. Çeşitli matematik yarışmalarında, ortaokul matematik sınavlarında yaygın olarak kullanılan bir teoremdir ve gerçek dünyadaki birçok probleme uygulanabilirliği vardır.

<span class="mw-page-title-main">Routh teoremi</span> Üçgenlerin alanları ile ilgili bir Öklid geometrisi teoremi

Geometride, Routh teoremi verilen bir üçgen ile üç cevianın ikili kesişimlerinden oluşan bir üçgen arasındaki alanların oranını belirler. Teorem, eğer üçgeninde , ve noktaları, , ve doğru parçaları üzerindeyse, o zaman , ve olmak üzere, , ve cevianları tarafından oluşturulan işaretli üçgenin alanı şöyle bulunur:

<span class="mw-page-title-main">Reuschle teoremi</span> Ortak bir noktada kesişen bir üçgenin cevianlarının bir özelliğini tanımlar

Temel geometride, Reuschle teoremi, ortak bir noktada kesişen bir üçgenin cevianlarının bir özelliğini tanımlar ve adını Alman matematikçi Karl Gustav Reuschle (1812-1875)'den alır. Ayrıca Fransız matematikçi Olry Terquem (1782-1862)'in adıyla 1842'de yayınlayan Terquem teoremi olarak da bilinir. Teorem, Euler doğrusu ve Feuerbach'ın dokuz nokta çemberi ile bağlantılı olarak benzer biçimde bulunan belirli köşe çaprazlarının kesişim özellikleriyle ilgili bir problemi ele almaktadır. Reuschle teoreminin ispatı, sekant teoreminin yanı sıra Ceva teoremi ve onun karşıt teoremine dayanmaktadır.

<span class="mw-page-title-main">Ters Pisagor teoremi</span> Öklid geometrisinde dik üçgenlerle ilgili bir teorem

Geometride, ters Pisagor teoremi aşağıdaki gibidir: