İçeriğe atla

Cebirsel geometri

Cebirsel geometri, matematiğin bir dalıdır. Adından anlaşılabileceği gibi, soyut cebirin, özellikle değişmeli cebirin yöntemleri ile geometrinin dili ve problemlerini bir araya getirir. Çağdaş matematik içerisinde merkezi bir rol üstlenmesinin yanında, karmaşık analiz, topoloji, sayılar kuramı gibi matematiğin diğer dallarıyla yakın ilişkisi vardır.

Cebirsel geometrinin ilgilendiği temel nesneler cebirsel varyetelerdir. Bunlar geometrik nesne olarak polinom denklem sistemlerinin çözüm kümeleridir. Doğrular, çemberler, paraboller, kelebek eğrileri, Cassini ovallerini içeren düzlem cebirsel eğrileri, cebirsel varyetelerin en çok incelenmiş sınıfları arasındadır. Düzlemin bir noktası için, eğer koordinatları bir polinom denklem sistemini sağlıyor ise, bir cebirsel eğri üzerindedir denir.

Polinomların ortak sıfır kümeleri

Klasik cebirsel geometrinin ilgilendiği temel nesneler, polinomların bir kümesinin ortak sıfır kümeleridir, yani kümedeki bütün polinomların kökü olan noktaların kümeleridir. Örneğin 3 boyutlu R3 uzayında bir küre,

denklemini sağlayan (x, y, z) noktalarının kümesi olarak tanımlanabilir. Yine 3 boyutlu R3 uzayında bir çember,

denklem sistemini sağlayan (x, y, z) noktalarının kümesi olarak tanımlanabilir.

Kaynakça

İlgili Araştırma Makaleleri

Cebir sayılar teorisini, geometriyi ve analizi içine alan geniş bir matematik dalıdır. Temel matematik işlemlerinden, çember ve daire alanları bulmayı kapsayan geniş bir ilgi alanına sahiptir. Cebir, mühendislik ve eczacılık gibi birçok alanda kullanılmaktadır. Kuramsal cebir, ileri matematiğin bir dalı olmakla birlikte sadece uzmanlar tarafından çalışılan bir koldur.

<span class="mw-page-title-main">Doğru (geometri)</span>

Doğru, matematikte mantıksal bir değerdir. Matematik'te ne olduğu belli olmayan (tanımsız) değerlerden biridir. Ayrıca geometride doğru ifadesi aynı doğrultuda olan ve her iki yönden de sonsuza kadar giden noktalar kümesi diye de tanımlanır. Bir doğru üzerinde en az 2 nokta, dışında da en az 1 nokta mevcuttur.

<span class="mw-page-title-main">Soyut cebir</span> Matematiğin bir alanı

Soyut cebir veya soyut matematik, matematiğin bir alanı olup, cebirsel yapılar üzerinde çalışır. Cebirsel yapılar, elemanları üzerinde belirli işlemlerin uygulandığı kümelerdir ve gruplar, halkalar, alanlar, modüller, vektör uzayları, kafesler ve alan üzerindeki cebirler içerir. Soyut cebir terimi, 20. yüzyılın başlarında temel cebirden ayırmak amacıyla türetilmiştir. Soyut cebir ileri matematik için temel hale geldikçe basitçe "cebir" olarak adlandırılırken, "soyut cebir" terimi pedagoji dışında nadiren kullanılır.

<span class="mw-page-title-main">Analitik geometri</span>

Analitik geometri, geometrik çalışmaya cebrik analizi uygulayan ve cebrik problemlerin çözümünde geometrik kavramları kullanan bir matematik dalı. Bütün bunlar kartezyen sistem denilen bir koordinat sisteminin kullanılmasıyla mümkündür. Kartezyen kelimesi, batıda analitik geometride ilk bilimsel çalışmayı yapan René Descartes'tan gelmektedir.

<span class="mw-page-title-main">Küre</span> geometrik şekil

Günlük kullanımıyla küre kusursuz simetriye sahip geometrik bir nesnedir, bir yüzeydir; üç boyutlu Öklit uzayında (R3) yatar.

<span class="mw-page-title-main">Çember</span>

Çember ya da dönge, düzlemde sabit bir noktaya eşit uzaklıkta bulunan noktaların kümesinin oluşturduğu yuvarlak, geometrik şekil. Çemberin çevrelediği 2 boyutlu alana daire denir.

<span class="mw-page-title-main">Konikler</span> bir huniyi ve düzlemi kesiştirince oluşan eğri

Konik kesit, eliptik veya dairesel bir çift taraflı koninin, düzlemle kesitinden meydana gelen eğriler. Bunlar, çember, elips, parabol ve hiperboldür.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

Vektör uzayı veya Yöney uzayı, matematikte ölçeklenebilir ve eklenebilir bir nesnelerin (vektörlerin) uzayına verilen isimdir. Daha resmî bir tanımla, bir vektör uzayı, iki elemanı arasında vektör toplamasının ve skaler denilen sayılarla çarpımın tanımlı olduğu ve bunların bazı aksiyomları sağladığı kümedir. Skalerler, rasyonal veya reel sayılar kümesinden gelebilir, ama herhangi bir cisim üzerinden bir vektör uzayı oluşturmak mümkündür. Vektör uzayları, skalerlerin geldiği cisime göre reel vektör uzayı, kompleks vektör uzayı veya genel bir cisim üzerinden K vektör uzayı şeklinde adlandırılır.

<span class="mw-page-title-main">Karmaşık analiz</span>

Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.

<span class="mw-page-title-main">Karmaşık düzlem</span>

Matematikte karmaşık düzlem, gerçel eksen ve ona dik olan sanal eksen tarafından oluşturulmuş, karmaşık sayıların geometrik bir gösterimidir. Karmaşık sayının gerçel kısmının x-ekseni boyuncaki yer değiştirmeyle, sanal kısmının ise y-eksenindeki yer değiştirmeyle temsil edildiği değiştirilmiş bir Kartezyen düzlem olarak düşünülebilir.

<span class="mw-page-title-main">Cebirsel topoloji</span>

Cebirsel topoloji, topolojik uzayları cebirsel gereç ve yöntemlerle inceleyen matematik dalı. Matematikte bir kümenin üzerine döşenecek yapı, yönelinen matematik dalını belirler. Bir kümeye bir ya da birkaç işlem konarak sayılar kuramı ya da cebir yapmaya başlanabilir. Kümenin üzerine bir topoloji koyaraksa topoloji ve, ayrıca uzunluk koyarsak, geometri yapmaya başlanır. Üzerine topoloji konmuş bir uzayı incelemek için kimi cebirsel, aritmetik veya topolojik değişmezler tanımlanır; bunlar aracılığıyla topolojik uzayın özellikleri ayırdedilir. Örneğin tıkızlık, bağlantılılık, sayılabilirlik bu tür değişmezlerdir. Topolojik eşyapısal iki uzaydan biri bu değişmeze sahipse diğeri de buna sahip olmalıdır. Yani, eğer iki uzay için ayrı ayrı bakılan bir değişmez aynı değilse, bu iki uzay eşyapısal olmayacaktır. Yukarıda anılan en eski değişmezlerin hemen ardından inşa edilen klasik değişmezler cebirsel olanlardır.

<span class="mw-page-title-main">Kök (matematik)</span>

Matematikte gerçel, karmaşık veya daha genel bir anlamda vektör değerli bir fonksiyonun kökü, fonksiyonun tanım kümesinde bulunan ve fonksiyonun 0 değerini aldığı noktalardır. Yani, eğer bir V kümesinden bir W vektör uzayına tanımlı bir fonksiyonu

<span class="mw-page-title-main">Fonksiyon grafiği</span> bir fonksiyonun (x, f(x)) çiftleri kümesi olarak gösterimi

Matematik'te bir fonksiyon'un grafiği, sıralı çiftlerin kümesidir.

<span class="mw-page-title-main">Bézout teoremi</span> aciklama

Bézout teoremi, cebirsel geometride n değişkenli n polinomun ortak sıfırlarının sayısı ile ilgili bir ifadedir. Orijinal biçiminde teorem, genel olarak ortak sıfırların sayısının, polinomların derecelerinin çarpımına eşit olduğunu belirtir. Adını Fransız matematikçi Étienne Bézout'dan almıştır.

<span class="mw-page-title-main">Matematikte simetri</span> matematikte simetri kavramı

Simetri yalnızca geometride değil, matematiğin diğer dallarında da ortaya çıkar. Simetri bir tür değişmezliktir: matematiksel bir nesnenin bir dizi işlem veya dönüşüm altında değişmeden kaldığı özelliktir.

<span class="mw-page-title-main">Cebirsel varyete</span>

Cebirsel varyeteler, matematiğin bir alt alanı olan cebirsel geometride çalışmanın ana nesneleridir. Klasik olarak cebirsel çeşitlilik, bir polinom denklem sisteminin gerçek veya karmaşık sayılar üzerindeki çözüm kümesi olarak tanımlanır. Modern tanımlamalar orijinal tanımın arkasındaki geometrik sezgiyi korumaya çalışırken kavramı birkaç farklı şekilde genelleştirir.

<span class="mw-page-title-main">Parametrik denklem</span>

Matematikte, bir parametrik denklem, bir grup niceliği parametreler olarak adlandırılan bir veya daha fazla bağımsız değişkenin fonksiyonları olarak tanımlar. Parametrik denklemler genellikle bir eğri veya yüzey gibi geometrik bir nesneyi oluşturan noktaların koordinatlarını ifade etmek için kullanılır ve sırasıyla parametrik eğri ve parametrik yüzey olarak adlandırılır. Bu gibi durumlarda, denklemler, toplu olarak nesnenin parametrik temsili veya parametrik sistem, veya parametrelendirilmesi olarak adlandırılır.

<span class="mw-page-title-main">Düzlemsel eğri</span>

Matematikte, bir düzlem eğrisi veya düzlemsel eğri, bir düzlem içinde yer alan bir eğri olup söz konusu düzlem, bir Öklid düzlemi, bir afin düzlem veya bir projektif düzlem olabilir. En sık çalışılan durumlar, düzgün düzlem eğrileri ve cebirsel düzlem eğrisidir.

<span class="mw-page-title-main">Deltoid eğrisi</span> düzlem eğri, 3-çentikli hiposikloid

Geometride, triküspoid eğri veya Steiner eğrisi olarak da bilinen deltoid eğri, üç çentikten oluşan bir hiposikloiddir. Başka bir deyişle, bir çemberin çevresi üzerindeki bir noktanın, yarıçapının üç veya bir buçuk katı olan bir çemberin içinde kaymadan yuvarlanırken oluşturduğu yuvarlanma eğrisidir. Adını, benzediği büyük Yunanca delta (Δ) harfinden alır.