İçeriğe atla

Cebir

Cebir sayılar teorisini, geometriyi ve analizi içine alan geniş bir matematik dalıdır. Temel matematik işlemlerinden, çember ve daire alanları bulmayı kapsayan geniş bir ilgi alanına sahiptir. Cebir, mühendislik ve eczacılık gibi birçok alanda kullanılmaktadır. Kuramsal cebir, ileri matematiğin bir dalı olmakla birlikte sadece uzmanlar tarafından çalışılan bir koldur.

Cebirle ilgili ilk çalışmalar Babillere kadar uzanır.[1] Yakın Doğu'da Hârizmî ve Ömer Hayyam (1050-1123) gibi isimler tarafından geliştirilmiştir.[]

Temel cebir, bilinmeyen değerleri temsilen harfler kullanmasıyla aritmetikten farklıdır.[2] denkleminde bir bilinmeyendir ve 'in değeri eşitliğin her iki tarafına -2 eklenmesiyle şeklinde bulunabilir. Kütle-enerji ilişkisinde : ve harfleri bilinmeyen değişkenleri ifade ederken, ise sabit sayıdır. Cebir birçok matematiksel ifadenin çözümünde yardımcı olur.

Farklı anlamları

Tarihsel açıdan cebirin birçok anlamı vardır, bunun sebebi cebirin anlamsal bolluğu ve çevresindeki anlam değiştiren etkenlerdir. Matematik gibi bir dalda bir kelimenin birden fazla anlamının olması karışıklıklara yol açabilir. Bu yanlış anlamaları engellemek için kelimenin etrafına bazı sözcükler eklenir.

  • Tek bir kelime olarak tanımlandığında cebir matematiğin büyük bir kısmını kapsar.
  • Yalnız başına tanımlandığı zaman lineer cebir veya temel cebir olarak tanımlanabilir.

Matematiğin bir dalı olarak Cebir

Cebirin oluşma dönemi ilk olarak bazı matematiksel sayıları harflerle simgeleyerek başladı. Örneğin bazı üstel fonksiyonlarda: formülündeki harflerine verilebilecek değerler ile in değerleri bulunabilir ancak nın olmaması gerekir. İlerleyen dönemlerde cebir; vektörler, matrisler ve polinomlar gibi matematiğin birçok farklı dallarında kullanılmaya başlamıştır. Daha sonra bu tanımlar cebirsel birimler olarak isimlendirilmiştir. 16. yüzyıldan önce matematikçiler; cebirciler ve geometriciler olarak iki gruba ayrılmışlardı. 16. ve 17. yüzyıllar sonucunda matematiğin şu anki hâline ulaşmasında cebirin büyük katkısı olmuştur. 19. yüzyılın ortalarında matematiğe yeni konular ve yeni dallar eklenmesine rağmen cebirden her zaman faydalanılmıştır. Bugünlerde cebirin konu yelpazesinden bazı parçalar çıkarılmış olsa da (Mathematics Subject Classification[3] 08-Genel cebir sistemleri, 12-Alan teorisi ve polinomlar, 13-Birleşik cebir, 15-Lineer cebir ve multilineer cebir; matris teorisi, 16-Bağlantılı alan ve halka cebiri, 17-Bağlantısız alan ve halka cebiri, 18-Kategori teorisi; homolojik cebir, 19-K-teorisi ve 20-Grup teorisi) gibi birçok temel konuyu içerisinde barındırmaktadır.

Etimoloji

Cebir kelimesinin kökeni Hârizmî tarafından yazılmış Arapça Ilm al-jabr wa'l-muḳābala adlı kitaptan gelmektedir. Kitabın isminin anlamı zorla yani cebirle bir hesabın yapılması bilimi olarak çevrilebilir. Kelimenin algebra (al-gebra) şeklinde İngilizceye eklenmesi ise Orta Çağ'daki İspanyol, İtalyan veya Latinler sayesinde olmuştur. 12. yüzyıldan başlayarak İtalyanların öncülüğünde Arapça yazılan eserler Batı dillerine çevrilmeye başlanmıştır, Hârizmî'nin Cebir kitabının da bu dönemde çevrilmiş olması ihtimali yüksektir. Cebir kelimesi İspanyolcada hâlen acil operasyon, ameliyat olarak kullanılmaktadır daha sonra matematiksel anlamları eklenmiştir.

Tarihi

François Viète'in 16. yüzyılın başlarından itibaren yapmış olduğu çalışmalar cebirin temellerini oluşturmuştur. 19. yüzyılın sonlarına kadar cebir genel olarak sadece denklem teorileri barındırıyordu.

Cebirin ön tarihi

Cebir sayfaları Harizmi al-Kitāb al-muḫtaṣar fī ḥisāb al-ğabr wa-l-muqābala

Cebir ilk olarak Babilliler tarafından matematiksel problemleri çözmek amaçlı kullanılmıştır. Matematikte şu an lineer denklemler veya orta dereceli lineer denklemler kullanılarak çözülen problemlerin temellerini Babilliler cebiri geliştirerek bulmuşlardır. Eski dönemlerde yaşamış olan çoğu Mısırlı, Çinli ve Yunan matematikçi, problem çözümlerinde geometri kökenli çözüm yollarını tercih ediyorlardı. Yunanlar kendi yarattıkları element matematiğini kullanırlardı ve bu yöntem ile birçok karışık sorunu çözmeyi başarmışlardır ancak bu yöntemleri Orta Çağ İslamı'na kadar fark edilememiştir. Plato'nun döneminde birçok Yunan matematikçi ani ve şiddetli bir değişime girmiştir. Yunanlar bu dönemde kendi yarattıkları geometrik çözüm yollarını geliştirerek geometrinin temel kuramlarını kullandılar. O yılların belki de en iyi matematikçilerinden biri olan Diophantus (ve aynı zamanda Arithmetica kitabının yazarı), cebirsel ifadelerin matematiksel yollarla çözümleri için birçok formülü geliştiren kişi olmuştur ve ilerleyen zamanlarda sayı teorisinin ve kendi yarattığı Diophantus denklemlerinin çıkmasını sağlamıştır. Matematiğin geliştiği ilk dönemlerde Hârizmî'nin yazdığı The Compendious Book on Calculation by Completion and Balancing isimli kitabı matematikte bazı görüşlerin oluşmasına neden oluyordu çünkü cebirin ve matematiğin temel disiplin kurallarının geometri ve aritmetikten farklı olduğunu söylemiştir. Helenistik matematikçiler: Diophantus, Alexandria ve Hint matematikçi Brahmagupta, Mısır ve Babillilerin yaratmış olduğu matematik kurallarını devam ettirdiler ve üzerlerine bir şeyler eklemek için çabaladılar. Yazmış oldukları kitaplardan da faydalanarak ilk kez içerisinde sıfır (0) ve eksi (-) sayıların olduğu denklemleri çözmeyi başardılar. Denklemler teorisine göre incelenen cebirin en önemli iki ismi Diophantus ve al-Khwarizmi'nin çalışmaları yıllarca incelenmiştir. Genellikle cebirin babası olarak Diophantus bilinir ancak Hârizmî'nin Al-Jabr disiplin kuralları sonucunda bu unvana onun sahip olması istenmektedir. Diophantus'u destekleyen kişiler Al-Jabr'daki cebirin biraz daha elementsel olduğunu ifade etmişler ve kendi savundukları Arithmetica ve Arithmetica kitaplarının Al-Jabr'dan daha teorik olduğunu söylemişlerdir. Al-Khwarizmi'yi destekleyenler ise "çıkarma" ve "dengeleme" (toplamanın tersi ve elemanların birbirlerini sıfırlaması) Al-Jabr kitabının cebiri her şeyden ayrı tutup yeni teoriler üzerine kurulmuş olmasından dolayı sevmişlerdir.[4] İranlı matematikçi Ömer Hayyam cebirsel geometrik çözümler ve küplü denklemler üzerinde çalışmış biridir. Bir diğer İranlı matematikçi ise Şerafeddin el-Tusî'dir. O da fonksiyonların gelişiminde etkili biri olmuştur. Hint matematikçiler Mahavira ve II. Bhaskara, İranlı matematikçi Al-Karaji[5] ve Çinli matematikçi Zhu Shijie birçok küplü denklemin çözümünde etkili olmuşlardır.

Cebrin tarihsel değişimi

Ortak cebirsel yapılar tablosu

1545'te İtalyan matematikçi Girolamo Cardano, Ars Magna (Büyük Sanat) isimli kitabını yayınladı, 40 bölümlük harika bir sanat eseridir ve ilk defa küplü ve üslü denklemler anlatılmıştır. François Viète'nin 16. yüzyılın sonlarına doğru yapmış olduğu çalışmalar cebrin klasik disiplin temellerinin atılmasını sağlamıştır. 1637 yılında René Descartes, La Géométrie isimli kitabını yayınlamıştır ve analitik geometrinin temelleri atılmıştır. Diğer önemli gelişmelerden biri ise 16. yüzyılın ortalarına doğru köklü ve küplü denklemlerin çözülmesidir. Determinant formülü Japon matematikçi Seki Takakazu tarafından 17. yüzyılda bulunmuştur ve bunu takiben Gottfried Leibniz 10 sene sonra lineer denklemlerin çözümünü kolaylaştırma adına matrisi yaratmıştır. Soyut cebir 19. yüzyılda geliştirilmiştir, şu anda Galois teorisi olarak bilinen denklemleri çözebilmek için geliştirilmişlerdir. "Modern algebra" 19. yüzyıla kökleri dayanan önemli bir konudur örneğin, Richard Dedekind ve Leopold Kronecker, cebirsel sayı teorisi ve cebirsel geometriyi yarattığı kabul edilen ve kullanan kişilerdir.

'Cebir' kelimesini barındıran konular

Matematiğin alanları,

  • Temel cebir, okullarda gösterilen cebirsel denklemler
  • Soyut cebir, gruplar, halkalar ve cisim gibi cebirsel yapıların incelendiği alan
  • Lineer cebir, lineer denklemlerin, vektör uzaylarının ve matrislerin kullanıldığı cebir
  • Komütatif cebir, değişmeli halkaların incelendiği alan
  • Bilgisayar cebri, bilgisayar yazılımlarında kullanılan cebir
  • Homolojik cebir, topolojik katman çözümlerinde kullanılan cebir
  • Evrensel cebir, her cebirsel özelliğin incelendiği cebir
  • Cebirsel sayı teorisi, sayı ve rakamların cebirsel bir yönle araştırılması
  • Cebirsel geometri, eğik şekillerin hacim ve alan hesaplamalarında
  • Cebirsel kombinatorik, cebirsel metotların kombinatorik sorularına uygulandığı alan

Birçok matematiksel terim cebir olarak tanımlanır;

İlkokul Cebri

İlkokul cebri genellikle sadece aritmetik bilgisi olan öğrencilere cebrin temel kurallarını öğretmek amaçlı gösterilen bir cebir türüdür. En temel ve basit cebir türüdür. Aritmetikte sadece sayılar ve aritmetiksel işlemler (+, −, ×, ÷) kullanılır. Cebirde ise sayılar genellikle değişken kabul edilir ve a, n, x, y ya da z gibi harflerle ifade edilir.

Cebirsel denklem birimleri:
  1 – Üs
  2 – katsayı
  3 – terim
  4 – işlem
  5 – sabit terim
  x, y – değişkenler
  • Temel cebir kurallarının kullanılması ile bir bilinmeyenli basit denklemlerin çözüm şekilleri anlatılır. Sayı çeşitleri, doğal sayılar, ardışık sayılar gibi sayı türleri anlatılır ve basit fonksiyonların özellikleri tanımlanır.

Polinomlar

ax2 + bx + c biçimindeki fonksiyonların x değerlerinin sıfır olduğu noktalarda çözüm kümesi bulunması denklemleridir. Her denklemin derecesine bağlı olarak kök türleri ve kök sayıları değişme gösterir. Fonksiyon ve polinomlar birbirlerine bağlı birimlerdir ve matematik ile cebrin önemli ve ileriye bağlı konularının temellerini oluşturan ciddi konulardır.

3. dereceden bir polinomun grafiği

Cebrin öğretilmesi

Temel, basit cebrin genellikle on bir yaşına gelmiş olan çocuklara anlatılması tercih edilir. Amerika'da genellikle sekizinci sınıfta temel cebir öğretimi başlar. 1997'den beri Virginia Üniversitesi gibi birçok üniversite bilgisayar yardımlı ve küçük gruplar hâlinde gençlere temel cebir eğitimi vermektedir.

Soyut Cebir

Soyut cebir genellikle aritmetik ve sayı teorilerinin birleşimini ifade eden bir cebir türüdür;

Setler: Sayı türlerini incelemekten ziyade soyut cebir, matematiğin tüm birimlerini bir çatı altında inceler ve tüm bu setler matrisler ve üslü denklemler içerebilir; bunlara ikinci veya üçüncü dereceden polinomların incelenmesi de dâhildir.

Denklemler arası işlemler: + ve - işlemlerinin yanı sıra * ve / işlemleri cebirin temel işlemlerindendir ve her denklem, fonksiyon veya polinomun çözülebilmesi için gerekli tanım aralıkları ve çözüm kümelerinin bulunduğu alanlar sorularda önceden ayarlanmış ve bildirilmiş olmalıdır.

Etkisiz eleman: Bir denklemde sonucu yapılan işleme göre değiştirmeyen veya aynı tutan elemanlara etkisiz eleman denir. Yapılacak matematiksel işlemin türüne göre etkisiz elemanlar değişkenlik gösterir örneğin bir çarpma işleminde etkisiz eleman bir iken, bir toplama işleminde bu eleman sıfırdır.

Ters elemanlar: Ters elemanlar bir sayının bölüm hâlinde yazılması ile oluşurlar, aa−1 = 1 ve a−1a = 1 gibi.

Dağılma özelliği: Matematiksel bir işlemde toplam veya çarpım hâlindeki elemanların grup hâlinde yerlerinin değiştirilmesi sonuçta bir değişikliğe neden olmaz. (2 + 3) + 4 = 2 + (3 + 4) genel olarak (ab) ∗ c = a ∗ (bc) ifade edilebilir.

Değişken özelliği: Toplamda veya çarpma işlemlerinde elemanların yerlerinin değiştirilmesi sonucu etkilemez ve buna cebrin değişme özelliği denir. 2 + 3 = 3 + 2 ve ab = ba

Gruplar

Gruplar genel olarak bir tanım aralığındaki kümeler ve bir çarpım işlemi olarak tanımlanır ve sonuç olarak:

  • ea işlemleri S kümesindeki bir çözüm elemanına eşit çıkar
  • S tanım aralığındaki her elemanın bir tersi vardır aa−1 ve a−1a
  • Eğer a, b ve c, S'nin elemanları ise (ab) ∗ c işlemi a ∗ (bc) işlemine eşittir. Bir grup içerisindeki işlemler birbirlerini sıfırladıkları zaman eşitlik söz konusu olur ve türlü şekillerde ifade edilebilirler (a + b) + c = a + (b + c). Rasyonel sayılarda bir (1) elemanı çarpım işlemlerinde etkisiz eleman görevi görür 1 × a = a × 1 = a ve a is 1/a çünkü a × 1/a = 1.
Örnekler
Küme: Doğal Sayılar NTam sayılar ZRasyonel sayılar Q (aynı zamanda reel R ve karmaşık C sayılar) 3 modülüne göre tam sayılar: Z3 = {0, 1, 2}
Çarpım + × (sıfır dışında) + × (sıfır dışında) + × (sıfır dışında) ÷ (sıfır dışında) + × (sıfır dışında)
Kapalı Evet Evet Evet Evet Evet Evet Evet Evet Evet Evet
Etkisiz 0 1 0 1 0 N/A 1 N/A 0 1
Tersi N/A N/A aN/A aN/A 1/aN/A sırasıyla 0, 2, 1 sırasıyla N/A, 1, 2
Dağılma özelliği Evet Evet Evet Evet Evet Hayır Evet Hayır Evet Evet
Değişme özelliği Evet Evet Evet Evet Evet Hayır Evet Hayır Evet Evet
Yapı birlikbirlikabelyen grup birlikabelyen grup yarıgrup abelyen grup yarıgrup abelyen grup abelyen grup (Z2)

Cebirsel alanlar

Cebirsel işlemlerde gruplar arasında genellikle tek işlem bulunur, en azından basit cebir kurallarına göre böyle kabul edilir. Detayı incelendiği zaman cebirsel alan ve halka önemli bir hâle gelir.

Bir halka matematiğinin iki temel işlemi vardır; (+) ve (×), ×, + işlem sırasına göre daha öndedir. İlk işlem (+) sonucunda bir abelian grubu oluşur. İkinci işlem sonucunda (×) dağılma özelliği ile işleme etki eder, ancak bu işlemler oluşurken herhangi bir şekilde bir kesir işlemini tanımsız duruma getirme veya fonksiyon tersi alınmasına ihtiyaç duyulmadığı için cebirsel sistemde bir sorun oluşmamaktadır. Toplam işlemlerinin (+) etkisiz elemanı 0 olarak kabul edilir ve toplam işlemlerini tersi a, −a olarak yazılabilir.

Dağılma özelliğinde (a + b) × c = a × c + b × c ve c × (a + b) = c × a + c × b, eşit olduğu için cebirsel sistemde çarpımın dağılma özelliği kullanılabilir olmuştur.

Dipnotlar

  1. ^ Struik, Dirk J. (1987). A Concise History of Mathematics. New York: Dover Publications. ISBN 978-0-486-60255-4. 
  2. ^ Boyer 1991, Europe in the Middle Ages, s. 258
  3. ^ "2010 Mathematics Subject Classification". 6 Haziran 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 12 Haziran 2014. 
  4. ^ Boyer 1991, "The Arabic" p. 229
  5. ^ Boyer 1991, "The Arabic Hegemony" p. 239 "Abu'l Wefa başarılı bir cebir ustası aynı zamanda geoemetricidir. ... Onu eğiten al-Karkhi sonuç olarak Diophantusun en büyük destekçilerinden biri haline geldi ancak onun teorilerinin aynılarını kullanmazdı! ... al-Karkhi ilk sayısal denklemlerin ve pozitif köklü sonuçların oluşmasını sağlayan kişi olmuştur. ax2n + bxn = c (sadece pozitif köklü denklemler),"

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matematik</span> nicelik, yapı, uzay ve değişim gibi konularla ilgilenen bilim dalı

Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.

<span class="mw-page-title-main">Hârizmî</span> Fars matematikçi, astronom ve coğrafyacı

Hârizmî ya da tam künyesiyle Ebû Ca'fer Muhammed bin Mûsâ el-Hârizmî ; matematik, gök bilim, coğrafya ve algoritma alanlarında çalışmış Fars bilim insanı. Hârizmî 780 yılında Harezm bölgesinin Hive şehrinde dünyaya gelmiştir. 850 yılında Bağdat'ta ölmüştür.

<span class="mw-page-title-main">Soyut cebir</span> Matematiğin bir alanı

Soyut cebir veya soyut matematik, matematiğin bir alanı olup, cebirsel yapılar üzerinde çalışır. Cebirsel yapılar, elemanları üzerinde belirli işlemlerin uygulandığı kümelerdir ve gruplar, halkalar, alanlar, modüller, vektör uzayları, kafesler ve alan üzerindeki cebirler içerir. Soyut cebir terimi, 20. yüzyılın başlarında temel cebirden ayırmak amacıyla türetilmiştir. Soyut cebir ileri matematik için temel hale geldikçe basitçe "cebir" olarak adlandırılırken, "soyut cebir" terimi pedagoji dışında nadiren kullanılır.

<span class="mw-page-title-main">Diferansiyel denklem</span>

Matematikte, diferansiyel denklem, bir ya da birden fazla fonksiyonu ve bunların türevlerini ilişkilendiren denklemdir. Fizik, kimya, mühendislik, biyoloji ve ekonomi alanlarında matematiksel modeller genellikle diferansiyel denklemler kullanılarak ifade edilirler. Bu denklemlerde, fonksiyonlar genellikle fiziksel ya da finansal değerlere, fonksiyon türevleriyse değerlerin değişim hızlarına denk gelir.

<span class="mw-page-title-main">Halka</span>

Halka, matematikte cebirin temel yapılarından biridir ve soyut cebirde tam sayıların soyutlamasıdır. Bu yapıyı işleyen dala halka kuramı denir. Halkalar diğer bir temel yapı olan grupların üzerine inşa edilir. Her halka, aynı zamanda değişmeli bir gruptur, ama bir halkadan daha fazla özelliği sağlaması istenir. Örneğin halkada grup işlemine ek olarak ikinci bir işlem daha vardır. Halkalara örnek olarak tam sayılar, modülo n sayılar, polinomlar ya da karmaşık sayılar verilebilir.

Cebirsel geometri, matematiğin bir dalıdır. Adından anlaşılabileceği gibi, soyut cebirin, özellikle değişmeli cebirin yöntemleri ile geometrinin dili ve problemlerini bir araya getirir. Çağdaş matematik içerisinde merkezi bir rol üstlenmesinin yanında, karmaşık analiz, topoloji, sayılar kuramı gibi matematiğin diğer dallarıyla yakın ilişkisi vardır.

<span class="mw-page-title-main">Ebu'l-Vefâ el-Bûzcânî</span> İranlı matematikçi ve astronom (940–998)

Ebu'l Vefa el-Buzcani, İranlı matematikçi ve astronom.

Abdülhamîd bin Vâsi bin Türk ya da tam adıyla Ebü'l-Fazl Abdülhamîd bin Vâsi' bin Türk el-Huttelî el-Hâsib, dokuzuncu yüzyılda yaşamış Türk matematikçi. Öz geçmişi hakkında çok az bilgi bulunmaktadır. Onunla ilgili iki kayıt vardır, biri Farslı İbn el-Nedim ve diğeri İbn el-Kefti tarafından, fakat bilgiler aynı değildir. Ancak İbn el-Kefti onun adını ʿAbd al-Hamid ibn Wase ibn Türk Jili olarak bahseder. Jili, Gilan anlamına gelir. D. Pingree'ye göre, o Ḵottal 'nın kuzeyinde ve Badaḵšān batısındadır) veya Gilan doğumludur. Abū Barza Fażl b. Moḥammad b. ʿAbd-al-Ḥamīd b. Tork 'un onun torunu olduğu görünür.

Diofantos cebirin babası olarak tanımlanan, cebir denklemleri ve sayılar teorisi üzerine Arithmetika adlı eserin yazarı olan Yunan matematikçi. Değişkenleri sadece tam sayılar olan ve kendi adını taşıyan Diofantos denklemiyle de bilinir.

<span class="mw-page-title-main">Temel cebir</span>

Basit cebir, matematik dersinde öğretilen cebirin en temel kısmıdır. Normalde liselerde öğretilir ve öğrencilerin işlem ve belirli sayılar üzerine kurulu olan aritmetiği anlamalarını sağlar. Cebir, değişken olarak bilinen sabit olmayan değerlerin büyüklüklerini açıklar. Soyut cebir aksine temel cebir, cebirsel yapı ile ilgilenmez, reel sayı ve karmaşık sayılarla ilgilenir.

Matematikte cebirsel ifade, sabitler ve değişkenlerden oluşan bir ifadedir ve toplama, çıkarma, çarpma, bölme ve bir rasyonel sayının üssünü alma gibi sonlu sayıda cebirsel işlemlerden oluşur. Örneğin, ifadesi bir cebirsel ifadedir. Karekök alma kuvveti oranında yükseltir. Cebirsel ifadeye başka bir örnek aşağıdaki kareköklü ifade verilebilir:

Tarih boyunca matematiğin konu çeşitliliği ve derinliği artmaktadır, matematiği kavrama, birçok konuyu matematiğin daha genel alanlarına göre sınıflandırma ve düzenleme için bir sistem gerektirir. Bir dizi farklı sınıflandırma şeması ortaya çıkmıştır ve bazı benzerlikleri paylaşsalar da, kısmen hizmet ettikleri farklı amaçlara bağlı olarak farklılıkları vardır. Ek olarak, matematik geliştirilmeye devam ettikçe, bu sınıflandırma şemaları da yeni oluşturulan alanları veya farklı alanlar arasında yeni keşfedilen bağlantıları dikkate alacak şekilde değişmelidir. Farklı alanlar arasındaki sınırı aşan, genellikle en aktif olan bazı konuların sınıflandırılması daha zor hale gelir.

Sembolik matematik; sembolik hesaplama ve cebirsel hesaplamadan oluşan bilgisayar cebrindeki, matematiksel ifadeleri ve diğer matematiksel nesneleri manipüle etmek için kullanılan algoritma ve yazılımların çalışması ve geliştirilmesine atıfta bulunan bilimsel bir alandır.Daha açıkça ifade etmek gerekirse, bilgisayar cebri bilimsel hesaplamanın bir alt alanı sayılır ve bununla beraber bilimsel hesaplama genelde yaklaşık kayan nokta sayılarına ve sayısal yaklaşımlara dayanmaktadır.Buna karşın sembolik hesaplama, hiçbir değişkeni içermeyen ifadelerle tam hesaplamayı vurgulamaktadır.Değişken içermeyen ifadelere ilişkin semboller manipüle edilmektedir ve adı bundan dolayı sembolik matematik olarak kabul edilir.

<span class="mw-page-title-main">Orta Çağ İslam matematiği</span> yaklaşık 622 ile 1600 yılları arasında İslam medeniyeti altında korunan ve geliştirilen matematiğin bütünü

İslam'ın Altın Çağı'nda matematik, özellikle 9. ve 10. yüzyıllarda, Yunan matematiği ve Hint matematiği üzerine inşa edilmiştir. Ondalık basamak-değer sisteminin ondalık kesirleri içerecek şekilde tam olarak geliştirilmesi, ilk sistematik cebir çalışması (Hârizmî tarafından yazılan Cebir ve Denklem Hesabı Üzerine Özet Kitap adlı eser ve geometri ve trigonometride önemli ilerlemeler kaydedilmiştir.

Bu, "Antik Yunan matematikçilerinin zaman çizelgesi"dir..

<span class="mw-page-title-main">Matematik tarihi</span> matematik biliminin tarihi

Matematik tarihi, öncelikle matematikteki keşiflerin kökenini araştıran ve daha az ölçüde ise matematiksel yöntemleri ve geçmişin notasyonunu araştıran bir bilimsel çalışma alanıdır. Modern çağdan ve dünya çapında bilginin yayılmasından önce, yeni matematiksel gelişmelerin yazılı örnekleri yalnızca birkaç yerde gün ışığına çıktı. MÖ 3000'den itibaren Mezopotamya eyaletleri Sümer, Akad, Asur, Eski Mısır ve Ebla ile birlikte vergilendirmede, ticarette, doğayı anlamada, astronomide ve zamanı kaydetmede/takvimleri formüle etmede aritmetik, cebir ve geometri kullanmaya başladı.

Bu, saf ve uygulamalı matematik tarihinin bir zaman çizelgesidir.

Bu liste, matematiğe kayda değer katkılarda bulunan veya matematikte başarı sağlayan kadınların eksik bir listesidir. Bunlar arasında matematiksel araştırma, matematik eğitimi, matematik tarihi ve felsefesi, kamusal sosyal yardım ve matematik yarışmaları gibi alanlar/konular kapsama alınmıştır.

Matematik konularının listesi, matematik ile ilgili çeşitli konuları kapsar. Bu listelerden bazıları yüzlerce makaleye bağlantı içerir; bazıları sadece birkaç tane ile bağlantılıdır. Bu makale, aynı içeriği, göz atmaya daha uygun bir şekilde organize halde bir araya getirmektedir. Listeler, temel ve ileri matematik, metodoloji, matematiksel ifadeler, integraller, genel kavramlar, matematiksel nesneler ve referans tablolarının özelliklerini kapsar. Ayrıca insanların adını taşıyan denklemleri, matematiksel toplulukları, matematikçileri, matematik dergilerini ve meta listeleri de kapsar.

<span class="mw-page-title-main">Maxime Bôcher</span> Amerikalı matematikçi (1867 – 1918)

Maxime Bôcher diferansiyel denklemler, seriler ve cebir üzerine yaklaşık 100 makale yayınlayan bir Amerikalı matematikçi. Ayrıca Trigonometri ve Analitik Geometri gibi temel metinler yazdı. Bôcher teoremi, Bôcher denklemi ve Bôcher Anma Ödülü onun adını almıştır.