İçeriğe atla

Cauchy sayısı

Cauchy sayısı (Ca), süreklilik mekaniği alanında, özellikle sıkıştırılabilir akışların çalışılmasında kullanılan boyutsuz bir niceliktir. Bu sayı, Fransız matematikçi Augustin Louis Cauchy'ye atfen adlandırılmıştır. Sıkıştırılabilirliğin önemli olduğu durumlarda, dinamik benzerlik sağlamak için elastik kuvvetler, atalet kuvvetleriyle birlikte göz önünde bulundurulmalıdır. Bu bağlamda, Cauchy sayısı, bir akış içerisindeki atalet kuvvetleri ile sıkıştırılabilirlik kuvveti (elastik kuvvet) arasındaki oran olarak tanımlanmakta ve şu formülle ifade edilmektedir:

,

burada,

, sıvının yoğunluğunu (SI birimleri: kg/m3),
u, yerel akış süratini (SI birimleri: m/s),
K, elastikiyet modülünü (SI birimleri: Pa) temsil eder.

Cauchy sayısı ile Mach sayısı arasındaki ilişki

İzentropik işlemlerde, Cauchy sayısı Mach sayısı cinsinden ifade edilebilir. İzentropik elastikiyet modülü şeklinde tanımlanır; burada , özgül ısıl kapasite oranı ve p ise sıvının basıncını ifade eder. Sıvı ideal gaz yasasına uygun davrandığında, aşağıdaki gibi ifade edilir:

,

burada

, ses hızını (SI birimleri: m/s),
R, karakteristik gaz sabitini (SI birimleri: J/(kg K)),
T, sıcaklığı (SI birimleri: K) temsil eder.

K (Ks) değeri Ca denkleminde yerine konduğunda,

.

Sonuç olarak, Cauchy sayısı, ideal bir gazın izentropik akışı için Mach sayısının karesi olarak ifade edilir.

Kaynakça

İlgili Araştırma Makaleleri

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Kılcallık</span>

Kılcallık ya da Kapiler Olay, bir maddenin başka bir maddeyi kendine çekmesi olayıdır. Bir bitkinin iletim sisteminde veya pürüzlü kâğıtla kolayca gözlenebilir. Bir sıvı ile başka bir maddenin moleküler seviyedeki çekiminin, sıvının kendi molekülleri arasındaki çekim kuvvetinden daha kuvvetli olması sonucunda meydana gelir. Bu etki sıvının dik bir yüzeye dokunduğu kısımda sıvı yüzeyinin menisküs denilen içbükey bir hâl almasına sebep olur. Aynı etki sünger gibi maddelerin suyu emmesinde de görülür.

<span class="mw-page-title-main">Akışkanlar dinamiği</span> hareket halindeki akışkanların (sıvılar ve gazlar) doğal bilimi

Fizik, fiziksel kimya ve mühendislikte akışkanlar dinamiği, akışkanların akışını tanımlayan akışkanlar mekaniğinin bir alt disiplinidir. Aerodinamik ve hidrodinamik dahil olmak üzere çeşitli alt disiplinleri vardır. Akışkanlar dinamiğinin, uçaklardaki kuvvetlerin ve momentlerin hesaplanması, boru hatları boyunca petrolün Kütle akış hızının belirlenmesi, hava durumu modellerinin tahmin edilmesi, uzaydaki bulutsuların anlaşılması ve fisyon silahı patlamasının modellenmesi dahil olmak üzere geniş bir uygulama yelpazesi vardır.

<span class="mw-page-title-main">Viskozite</span> bir sıvının fiziksel özelliği

Viskozite, akmazlık veya ağdalık, akışkanlığa karşı direnç. Viskozite, bir akışkanın, yüzey gerilimi altında deforme olmaya karşı gösterdiği direncin ölçüsüdür. Akışkanın akmaya karşı gösterdiği iç direnç olarak da tanımlanabilir. Viskozitesi yüksek olan sıvılar ağdalı olarak tanımlanırlar.

<span class="mw-page-title-main">Reynolds sayısı</span>

Akışkanlar dinamiği alanında, Reynolds sayısı, farklı durumlarda akışkan akışı desenlerini tahmin etmeye yardımcı olan bir boyutsuz sayıdır ve eylemsizlik kuvvetleri ile viskoz kuvvetler arasındaki oranı ölçer. Düşük Reynolds sayılarında, akışlar genellikle laminer akış tarafından domine edilirken, yüksek Reynolds sayılarında akışlar genellikle türbülanslı olur. Türbülans, akışkanın hız ve yönündeki farklılıklardan kaynaklanır ve bazen bu yönler kesişebilir veya akışın genel yönüne ters hareket edebilir. Bu girdap akımları, akışı karıştırmaya başlar ve bu süreçte enerji tüketir, bu da sıvılarda kavitasyon olasılığını artırır.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

Prandtl sayısı boyutsuz bir sayıdır. Momentum yayınımının termal yayınıma oranıdır. Sayı, Alman fizikçi Ludwig Prandtl'a ithafen adlandırılmıştır.

Knudsen sayısı, moleküler ortalama serbest yol ile kabaca ölçülebilir uzunluk skalasının oranını veren boyutsuz sayıdır. Bu uzunluk skalası, örneğin, bir sıvının içinde yer alan bir cismin çapı olabilir. Knudsen sayısı adını Danimarkalı fizikçi Martin Knudsen'e (1871-1949) atfen almıştır.

Ses enerjisi, titreşim veya maddenin salınımı ile ilgili enerji biçimidir. Ses dalgalarının yayılması için bazı materyala ihtiyaç vardır.

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

Einstein-Hilbert etkisi genel görelilikte en küçük eylem ilkesi boyunca Einstein alan denklemleri üretir. Hilbert etkisi genel görelilikte yerçekiminin dinamiğini tarifleyen fonksiyonel işlemdir. metrik işaretiyle, etkinin çekimsel kısmı,

Stokes Akışı George Gabriel Stokes tarafından geliştirilmiştir. Aynı zamanda sürünme akışı olarak da adlandırılır. Bu akışlar, advektif Atalet kuvvetlerinin viskoz kuvvetlere göre küçük olduğu akışlardır. Adveksiyon, herhangi bir dinamik davranışta korunan değerlerin parçacıklar veya sistemler arasındaki kütlesel hareket ile taşınımıdır. Atalet kuvvetlerinin küçük olması ise hareketlerin düşük hızlı olduğunu ifade eder. Bunlara bağlı olarak Stokes Akışları Reynolds Sayısının küçük olduğu akışlardaki basitleştirilmiş modeldir. Bu tipik durumun olduğu akışlarda hız oldukça yavaştır ve viskozite çok yüksektir veya karakteristik uzunlukların oranı küçüktür. Sürünme akışı ilk olarak göreceli hareketin küçük olduğu veya statik olan mekanik parçaların yağlanmasında incelenmiştir. Ayrıca bu akış doğada mikroorganizmaların akışkanlar içindeki hareketlerinde gözlenir. Teknolojide ise MEMS’de ve polimerlerde bu akış görülebilir.

Fizikte Einstein ilişkisi; 1904'te William Sutherland'in, 1905'te Albert Einstein'ın ve 1906'da Marian Smoluchowski'nin Brown hareketi üzerine yaptıkları çalışmalarında bağımsız olarak ortaya koydukları önceden beklenmedik bir bağlantıdır. Denklemin daha genel biçimi:

Kavitasyon sayısı olarak adlandırılabilecek üç boyutsuz sayı mevcuttur: hidrodinamik kavitasyon durumları için kavitasyon sayısı, pompalarda kavitasyon için Thoma sayısı ve ultrasonik kavitasyon için Garcia-Atance sayısı.

Akışkanlar dinamiğinde, Eötvös sayısı (Eo), diğer adıyla Bond sayısı (Bo), sıvı yüzeyinin hareketinde yerçekimi kuvvetlerinin yüzey gerilimi kuvvetlerine oranını ölçen bir boyutsuz sayıdır. Viskoz sürüklenmenin etkisini gösteren, genellikle olarak ifade edilen Kapiller sayısı ile birlikte, , örneğin toprak gibi, sıvının gözenekli ortam veya granüler ortamlarda hareketini incelemek için kullanılır. Bond sayısı, kabarcıklar veya çevresindeki bir akışkanda hareket eden damlaların şeklini karakterize etmek için Morton sayısı ile birlikte kullanılır. Bu boyutsuz terim, sırasıyla Macar fizikçi Loránd Eötvös (1848–1919) ve İngiliz fizikçi Wilfrid Noel Bond (1897–1937)'un adını taşır. Eötvös sayısı terimi Avrupa'da daha sık kullanılırken, Bond sayısı dünyanın diğer bölgelerinde yaygın olarak kullanılmaktadır.

Euler sayısı (Eu), akışkan akışı hesaplamalarında kullanılan bir boyutsuz sayıdır. Bu sayı, yerel bir basınç düşüşü ile akışın birim hacim başına kinetik enerjisi arasındaki ilişkiyi ifade eder ve akıştaki enerji kayıplarını karakterize etmek için kullanılır. Mükemmel sürtünmesiz bir akış, Euler sayısının 0 olduğu duruma karşılık gelir. Euler sayısının tersi, sembolü Ru olan Ruark Sayısı olarak adlandırılır.

Marangoni sayısı (Ma), yaygın olarak tanımlandığı üzere, Marangoni akışları ile difüzyon taşıma hızını karşılaştıran bir boyutsuz sayıdır. Marangoni etkisi, sıvının yüzey gerilimindeki gradyanlardan kaynaklanan akışıdır. Difüzyon ise yüzey gerilimindeki gradyanı oluşturan maddenin yayılmasıdır. Bu nedenle, Marangoni sayısı akış ve difüzyon zaman ölçeklerini karşılaştıran bir tür Peclet sayısıdır.

Akışkanlar dinamiği alanında, basınç katsayısı bir boyutsuz sayı olup, bir akış alanındaki bağıl basınçları ifade eder. Basınç katsayısı, aerodinamik ve hidrodinamik çalışmalarında kullanılmaktadır. Her bir akış alanında, her konumsal noktanın kendine özgü bir basınç katsayısı, Cp değeri bulunmaktadır.

Akışkanlar mekaniğinde, Rayleigh sayısı (Ra, Lord Rayleigh'e ithafen) bir akışkan için kaldırma kuvveti ilişkili bir boyutsuz sayıdır. Bu sayı, akışkanın akış rejimini karakterize eder: belirli bir alt aralıkta bir değer laminer akışı belirtirken, daha yüksek bir aralıktaki değer türbülanslı akışı belirtir. Belirli bir kritik değerin altında, akışkan hareketi olmaz ve ısı transferi konveksiyon yerine ısı iletimi ile gerçekleşir. Çoğu mühendislik uygulaması için Rayleigh sayısı büyük olup, yaklaşık 106 ile 108 arasında bir değerdedir.

<span class="mw-page-title-main">Weber sayısı</span>

Weber sayısı (We), akışkanlar mekaniği alanında farklı iki akışkan arasındaki ara yüzeylerin bulunduğu akışkan akışlarını analiz ederken sıkça kullanılan bir boyutsuz sayıdır ve özellikle yüksek derecede eğilmiş yüzeylere sahip çok fazlı akışlar için oldukça faydalıdır. Bu sayı, Moritz Weber (1871–1951)'in adıyla anılmaktadır. Bu sayı, akışkanın eylemsizliğinin yüzey gerilimine kıyasla göreceli önemini ölçmek için kullanılan bir parametre olarak düşünülebilir. İnce film akışlarının ve damlacık ile kabarcık oluşumlarının analizinde büyük önem taşır.