İçeriğe atla

Cauchy integral formülü

Matematikte, Augustin Louis Cauchy'nin adıyla adlandırılan Cauchy integral formülü karmaşık analizde merkezi bir ifadedir. Bir disk üzerinde tanımlanmış holomorf bir fonksiyonun tamamen, fonksiyonun disk sınırındaki değerleri tarafından belirlendiğini ifade eder. Ayrıca, holomorf bir fonksiyonun tüm türevleri için formül elde etmekte de kullanılabilir. Cauchy formülünün analitik önemi karmaşık analizde "türev alma integral almaya denktir" ifade etmesidir: Bu yüzden karmaşık türevlilik, integral alma gibi, gerçel analizde olmayan düzgün limitler altında iyi davranma özelliğine sahiptir.

Teorem

U, karmaşık düzlem C 'nin açık bir altkümesi olsun, f : UC holomorf bir fonksiyon olsun ve D = { z : | z - z0| ≤ r} kapalı diski tamamen U 'nun içinde yer alsın. C kapalı diskin sınırını oluşturan çember olsun. O zaman, D 'nin içindeki her a noktasında kontür integralinin saat yönünün tersine alındığı

ifadesi doğru olur.

Bu ifadenin kanıtı Cauchy integral teoremini kullanır ve benzer bir şekilde sadece f 'nin karmaşık türevliliğini gerektirir. Cauchy integral formülünde integrali alınan ifadenin paydasının (a - z0) değişkeninde kuvvet serisi açılabildiği için, holomorf fonksiyonlar analitiktir sonucu ortaya çıkar. Özellikle, f aslında

ile sonsuz kere türevlenebilirdir. Bu formüle bazen, Cauchy türev formülü de denilmektedir.

C çemberi a etrafında dolanım sayısı bir olan U içindeki herhangi bir kapalı doğrultulabilir eğri ile değiştirilebilir. Dahası, f 'nin yol tarafından çevrelenen açık bölgede holomorf olması ve kapanışında sürekli olması yeterlidir.

Kanıt taslağı

Cauchy integral teoremi kullanılarak, C (veya kapalı doğrultulabilir eğri) üzerinde alına integralin a etrafında alınan herhangi bir küçük çember üzerindeki integralle aynı olacağı gösterilebilir. f(z) sürekli olduğu için f(z) 'nin f(a) 'ya yakın olduğu küçük bir çember seçilebilir. Diğer taraftan, a merkezli herhangi bir C çemberi üzerindeki

integrali 2πi 'ye eşittir. Bu integral 0 ≤ t ≤ 2π ise ve ε çemberin yarıçapıysa, alınarak parametrizasyon yoluyla (Değişken değiştirme) hesaplanabilir.

ε → 0 alınarak ise istenilen tahmin

elde edilir.

Örnek

g(z) = z2 / (z2 + 2z + 2) fonksiyonunun mutlak değerinin yüzeyi ve yazıda açıklanan kontürlerle birlikte tekillikleri.

|z| = 2 tarafından tanımlanan kontür (bu kontüre C denilsin) ve

ele alınsın.

g(z) 'nin kontür etrafındaki integralini bulmak için, g(z) 'nin tekilliklerinin bilinmesi gerekir. ve ise, g şu şekilde tekrar yazılabilir:

Kutupların ne olduğu açıktır, kutupların mutlak değeri 2'den küçüktür ve bu yüzden kontürün içinde yer alırlar ve formülün kullanımına uygundurlar. Cauchy-Goursat teoremi kullanılarak, bu kontür etrafındaki integral z1 ve z2 etrafında ayrı ayrı daha küçük çember kontürleri alınarak elde edilen integrallerin toplamı şeklinde yazılabilir. Bu küçük kontürler z1 ve z2 için sırasıyla C1 ve C2 olsun.

C1 etrafında f analitiktir (çünkü kontür diğer tekilliği içermez) ve bu bir f 'nin

formunda yazılmasına olanak verir. Şimdi

olur. Diğer kontür etrafında da benzer işlem yapılırsa


elde edilir.

O zaman C kontürü etrafındaki orijinal integral bu iki integralin toplamı olur:

Sonuçlar

İntegral formülünün geniş bir uygulama alanı vardır. Birincisi, bir fonksiyon açık bir küme üzerinde holomorfsa, o zaman fonksiyon aynı yerde sonsuz kere türevlenebilirdir. Dahası, analitik bir fonksiyondur yani kuvvet serisi şeklinde temsil edilebilir. Bu ifadenin kanıtı

ifadesinde baskın yakınsaklık teoremini ve geometrik seriyi kullanır. Formül aynı zamanda meromorfik fonksiyonların bir sonucu olan kalıntı teoreminin ve ilişkin bir sonuç olan argüman ilkesinin kanıtında kullanılmaktadır. Morera teoremi sayesinde holomorf fonksiyonların düzgün limitinin de holomorf olduğu bilinmektedir. Bu sonuç Cauchy integral formülünden de çıkarılabilir: Formül limit içinde ve integrali alınan ifade için de geçerlidir ve bu yüzden integral kuvvet serisi olarak açılabilir. Ayrıca, daha yüksek mertebeden türevler için Cauchy formülü bu türevlerin hepsinin düzgün bir şekilde yakınsadığını gösterir.

Cauchy integral formülünün gerçel analizdeki analoğu harmonik fonksiyonlar için olan Poisson integral formülüdür. Bu bağlamda, holomorf fonksiyonların özelliklerinin çoğu taşınabilir. Ancak, daha genel türevlenebilir ve gerçel analitik fonksiyonlar sınıfı için artık bunun gibi sonuçlar geçerli değildir. Örneğin, gerçel bir fonksiyonun birinci türevi daha yüksek mertebeden türevlerin varlığını veya fonksiyonun analitikliğini göstermez. Benzer bir şekilde, bir (gerçel) türevlenebilir fonksiyonlar dizisinin düzgün limiti türevlenebilme özelliğine sahip olmayabilir veya türevlenebilir olur ama bu türev dizinin elemanlarının türevlerinin limiti olmayabilir.

Genelleştirmeler

Pürüzsüz fonksiyonlar

Cauchy integral formülünün bir versiyonu, Stoke teoremine dayandığı için pürüzsüz fonksiyonlar için de geçerlidir. D, C 'de bir disk olsun ve f, D 'nin kapanışında bir sürekli bir şekilde türevlenebilir fonksiyon yani C1 olan bir fonksiyon olsun. O zaman (Hörmander 1966, Teorem 1.2.1),

olur. Bu temsil formülü aynı zamanda D içinde, homojen olmayan Cauchy-Riemann denklemlerini çözmek için de kullanılabilir. Aslında, φ, D içinde fonksiyonsa,

denkleminin özel bir f çözümü

tarafından verilir.

Daha ihtimamlı bir şekilde (Hörmander 1966, Teorem 1.2.2), μ, C üzerinde bir tıkız desteğin karmaşık (sonlu) ölçümü olursa, o zaman

μ 'nün desteği dışında holomorf bir fonksiyon olur. Dahası açık bir D kümesi üzerinde bir φ ∈ Ck(D) (k≥1) için

olursa, o zaman de Ck(D) 'nin içinde yer alır ve

denklemini sağlar.

İlk sonuç, kısaca, Cauchy çekirdeği denilen

ile tıkız bir şekilde desteklenen ölçümün μ*k(z) girişimi, μ 'nün desteği dışında holomorf bir fonksiyon olmasıdır. İkinci sonuç ise, Cauchy çekirdeğinin Cauchy-Riemann denklemlerinin temel bir çözümü olduğunu ifade eder.

Çok değişkenli karmaşık analizdeki genelleştirmeler

Yüksek boyutlarda, iken olduğu gibi geçerli olan tek bir gösterim mevcut değildir. Çok değişkenli karmaşık analizde, Cauchy integral formülü polidisklere genelleştirilebilir [1]. D, n tane açık diskin yani D1, ..., Dn 'nin kartezyen çarpımı olsun:

f, D 'de holomorf ve D 'nin kapanışında sürekli olsun. O zaman, ζ=(ζ1,...,ζn) ∈ D olursa aşağıdaki formül elde edilir:

Notlar

  1. ^ (Hörmander 1966, Teorem 2.2.1)

Kaynakça

  • Lars Ahlfors, Complex analysis, McGraw Hill, 3. baskı, 1979, isbn=978-0070006577.
  • Lars Hörmander, An introduction to complex analysis in several variables, Van Nostrand, 1966.

Ayrıca bakınız

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Karmaşık analiz</span>

Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.

Matematiğin bir alanı olan karmaşık analizde, karmaşık değişkenli ve karmaşık değerler alan bir f fonksiyonu

<span class="mw-page-title-main">Morera teoremi</span> Matematik terimi

Matematiğin bir dalı olan karmaşık analizde, Giacinto Morera'nın ardından adlandırılan Morera teoremi, bir fonksiyonun holomorf olduğunu kanıtlamak için kullanılan temel bir sonuçtur. İtalyan matematikçi Giacinto Morera'nın adını taşımaktadır.

<span class="mw-page-title-main">Cauchy integral teoremi</span> Matematiksel analiz ile ilgili bir teorem

Matematiğin bir dalı olan karmaşık analizde, Augustin Louis Cauchy'nin ismine atfedilen Cauchy integral teoremi, karmaşık düzlemdeki holomorf fonksiyonların çizgi integralleri hakkında önemli bir teoremdir.

Matematiğin bir dalı olan karmaşık analizde Augustin Louis Cauchy ve Bernhard Riemann'a atfen Cauchy-Riemann denklemleri olarak adlandıran denklemler, türevlenebilir bir fonksiyonun açık bir kümede holomorf fonksiyon olması için gerekli ve yeterli şartları sağlayan kısmi diferansiyel denklemlerdir. Bu denklemler sistemi ilk defa Jean le Rond d'Alembert'in 1752 yılındaki çalışmasında ortaya çıkmıştır. Daha sonra, 1777 yılındaki çalışmasıyla Leonhard Euler bu sistemi analitik fonksiyonlarla ilişkilendirmiştir. Cauchy ise bu sistemi 1814'teki çalışmasındaki fonksiyonlar teorisinde kullanmıştır. Riemann'ın fonksiyonlar teorisi üzerine olan doktora tezinin tarihi ise 1851'dir.

Matematiğin bir alt dalı olan karmaşık analizde, Liouville teoremi tam fonksiyonların sınırlılığıyla ilgili temel bir teoremdir.

<span class="mw-page-title-main">Kalıntı teoremi</span>

Karmaşık analizdeki kalıntı teoremi veya bilinen bir diğer adıyla rezidü teoremi, analitik fonksiyonların kapalı eğriler üzerindeki çizgi integrallerini bulmak için kullanılan önemli bir araçtır ve ayrıca sık bir şekilde gerçel integralleri bulmak için de kullanılır. Cauchy integral teoremini ve Cauchy integral formülünü genelleştirir.

<span class="mw-page-title-main">Çizgi integrali</span>

Matematikte bir çizgi integrali, integrali alınan fonksiyonun bir eğri boyunca değerlendirildiği integraldir. Çeşitli farklı çizgi integralleri kullanılmaktadır. Kapalı eğrinin kullanıldığı durumlarda integrale kontür integrali denildiği de olmaktadır.

Karmaşık analizde kalıntı veya rezidü, bir meromorf fonksiyonun bir tekillik etrafındaki çizgi integrallerinin davranışını açıklayan bir karmaşık sayıdır. Kalıntılar oldukça kolay bir şekilde hesaplanabilir ve bilindiklerinde kalıntı teoremi sayesinde çok karışık gerçel integrallerin belirlenmesi yolunu açarlar.

Karmaşık analizde kontür integrali veya kontür integrali almak karmaşık düzlemdeki yollar boyunca belli integralleri bulmak için kullanılan bir yöntemdir.

<span class="mw-page-title-main">Riemann zeta işlevi</span>

Matematikte Riemann zeta işlevi , Alman matematikçi Bernhard Riemann tarafından 1859'da bulunmuş olan ve asal sayıların dağılımıyla olan ilişkisinden ötürü sayı kuramında önemli yeri bulunan seçkin bir işlevdir. İşlev; fizik, olasılık kuramı ve uygulamalı istatistikte de kullanılmaktadır.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

<span class="mw-page-title-main">Trigama fonksiyonu</span> Poligama fonksiyonu

Matematik'te, trigama fonksiyonu, ψ1(z), olarak gösterilen ikincil poligama fonksiyonu'dur ve tanımı

.
<span class="mw-page-title-main">Ters Gama fonksiyonu</span>

Matematik'te ters gama fonksiyonu özel fonksiyon'dur.

Matematik'te, Hurwitz zeta fonksiyonu, adını Adolf Hurwitz'ten almıştır, çoğunlukla zeta fonksiyonu denir. Formel tanımı için kompleks değişken s 'in Re(s)>1 ve q 'nun Re(q)>0 yardımıyla

Matematiğin bir alt dalı olan karmaşık analizde Hurwitz teoremi, matematikçi Adolf Hurwitz'in ispatladığı ve bu yüzden onun ismini almış önemli bir sonuçtur. Genel bir şekilde ifade etmek gerekirse, Hurwitz teoremi karmaşık düzlemdeki bir bölge üzerinde tanımlı bir holomorf fonksiyonlar dizisinin sıfırları ile bu dizinin limiti olan fonksiyonun sıfırlarını ilişkilendirir.

Bateman dönüşümü, matematiğin kısmi diferansiyel denklemler başlığında, üç karmaşık değişkenli holomorf bir fonksiyonunun çizgi integrali kullanılarak, dalga denkleminin üç ve Laplace denkleminin dört boyutta çözülmesi için bir yöntemdir. Adını, bu konudaki ilk yayını yapan İngiliz matematikçi Harry Bateman'den almıştır.

Matematikte, Bochner-Martinelli formülü, Cauchy integral formülünün birden fazla kompleks değişkenli fonksiyonlara yönelik genellemelerinden birisidir. Enzo Martinelli ve Salomon Bochner tarafından bağımsız olarak kanıtlanmıştır.

Matematiğin bir alanı olan çok değişkenli kompleks analizde, Bergman çekirdeği, karesi integrallenebilir holomorf fonksiyonlardan oluşan Hilbert uzayının doğuran çekirdeğidir. Stefan Bergman'ın ardından isimlendirilmiştir.

Matematiğin bir alt dalı olan çok değişkenli karmaşık analizde Bergman-Weil formülü, çok değişkenli holomorf fonksiyonların integral temsillerinden biridir. Bergman-Weil formülü aynı zamanda Cauchy integral formülünü birde fazla karmaşık boyuta genelleştirir. Stefan Bergman ve André Weil tarafından literatüre sokulmuştur.