İçeriğe atla

Catalan sayıları

Katalan sayıları, kombinatorik matematikte birçok problemin çözümünde kullanılabilen özel bir sayı dizisi. Adını Belçikalı matematikçi Eugène Charles Catalan(1814-1894)’dan alan bu dizinin terimleri,

formülüyle bulunur. Alternatif bir formül olan

’in bir doğal sayı olduğunu bir önceki formülden daha açık bir şekilde gösterir.

Katalan sayılarının her biri, kendinden önceki terimlere bağlıdır. Yani : alınır ve diğerleri için

uygulanır.

Hesaplamayı kolaylaştıran bir başka formül ise

'dir.

Örnekler

1. 3 çift parantez, bir cümle içinde kaç farklı şekilde bulunabilir?

Cevap olacak ve parantezler şu şekillerde kullanılabilecektir:

((()))     ()(())     ()()()     (())()     (()())

2. 3 düğümlü bir ikili ağaç, kaç farklı şekilde çizilebilir?

Cevap yine 'tir.

3. 4x4'lük, karelere bölünmüş bir alanda, sol alt köşeden sağ üst köşeye kaç farklı şekilde çıkılabilir?

4. Bir altıgen, köşegenler yardımıyla oluşturulmuş üçgenlere kaç farklı şekilde ayrılabilir?

5. 1'den 4'e kadar olan sayılar, sıralı bir üçlü oluşturmamak kaydıyla kaç farklı şekilde yan yana getirilebilir?

{1432, 2143, 2413, 2431, 3142, 3214, 3241, 3412, 3421, 4132, 4213, 4231, 4312,4321}

6. 4 basamaklı bir merdiven, 4 karoyla kaç farklı şekilde kaplanabilir?

7. nxn boyutlu bir A matrisinde, her ise, o matrise Hankel matrisi denir ve determinant, boyuttan bağımsız olarak daima 1'dir.

Katalan sayılarının sayma problemlerindeki (Kombinatorik) uygulamaları

Bu dizinin terimleri, kombinatorik matematiğin problemlerini çözmede fayda sağlar. Yukarıda gördüğümüz örnekler bunlardan bazılarıdır. Farklı başlangıç değerleri için problemin cevabı, başlangıç değerini n yerine yazarak elde edilen Katalan sayısına eşit olur.

 ;

  • n çift parantezin kaç farklı şekilde düzgün konumlanabileceğini, (düzgün konumlanmakla kastedilen, açılan her parantezin kapanması ve bir parantez açılmadan kapatma parantezi konmamasıdır.)
  • n+1 dallı bir ikili ağacın kaç farklı şekilde oluşturulabileceğini,
  • nxn karelik bir alanda, diagonalin üzerine çıkmayacak şekilde, sol alt köşeden sağ üst köşeye kaç farklı şekilde ulaşılabileceğini,
  • n+2 kenarlı bir konveks çokgenin, köşegenler aracılığıyla kaç üçgene bölünebileceğini,
  • 1'den n'e kadar olan sayıların, sıralı üçlü oluşturmamak koşuluyla kaç farklı şekilde dizilebileceğini,
  • n basamaklı bir merdivenin, n tane karoyla kaç farklı şekilde kaplanabileceğini,
  • {1,…,n} kümesinin kesişmeyen kısımlarının sayısını,
  • 2xn boyutlu bir standart Young tablosunun kaç farklı şekilde oluşturulabileceğini,

Ve bunlara benzer sayma problemlerinin nasıl çözülebileceğini gösterir.,

Formülün İspatları

1.İspat

Bu ispat, Dyck kelimelerinin(baştan sona doğru nereden bölünürse bölünsün, X'lerin sayısının Y'lerden az olmadığı, X ve Y'den oluşan kelimeler) yazılışına dayanır. Bu durumda , kurala uygun şekilde yazılmış kelimelerin sayısıdır. Bu kurala uygun, c ve c+ 'lardan oluşan, (boş da olabilen) bir kelime oluşturur ve c'yi c=[c1]c2 şeklinde yazarsak, c+ için uygun olan yerlerin toplamı,

b de dengeli, yani eşit sayıda c ve c+ içeren, 2n uzunluğunda bir kelime ve olsun. Yukarıda olduğu gibi, dengeli bir kelime de [c]b ya da ] c+ [b olarak yazılabilir, öylseyse

Yanlış fakat dengeli olan bir kelime de c] ile başlar, dolayısıyla,

Bu eşitlikten ve Bi = di Ci 'den faydalanarak : elde edilir. Katsayılar Cn için verilen ilk formülle karşılaştırılınca di = i + 1 bulunur. O halde,

2.İspat

Bu ispat da Katalan sayılarının üçgenleme tanımını kullanarak Cn ve Cn+1 arasında bir bağıntı kurmamızı sağlar. n+2 kenarlı bir P çokgeninin bir kenarını temel olarak alalım. P çokgeni üçgenlenebiliyorsa 2n+1 kenarından birini seçip devam edebiliriz. Bu şekilde oluşturulabilecek (4n+2) Cn farklı durum vardır. Bir de n+3 kenarlı bir Q çokgeni verilsin. Yine bir kenarını temel aldığımızda, Q üçgenlenebilir bir çokgense, ilkinden farklı bir kenar daha seçebiliriz. Bu kez oluşturabileceğimiz (n+2) Cn+1 farklı durum vardır. Şimdi bu ikisi arasında bir geçiş yapabiliriz: ya Q çokgenini, bir kenarı işaretli olan bir üçgenini çıkararak küçülteceğiz ya da P'nin işaretli kenarının yerine bir üçgen koyarak P'yi genişletip bir kenarını işaretleyeceğiz. Öyleyse ;

’in binom formülü,: başlangıç koşulu ve bu bağıntı yoluyla doğrudan elde edilebilir.

Ayrıca bakınız

Dış bağlantılar

https://web.archive.org/web/20040808170406/http://www.math.harvard.edu/~mantovan/ADMIN/catalan2.pdf

http://www.geometer.org/mathcircles/catalan.pdf 17 Eylül 2011 tarihinde Wayback Machine sitesinde arşivlendi.

http://www.math.utah.edu/mathcircle/notes/mladen2.pdf 7 Haziran 2011 tarihinde Wayback Machine sitesinde arşivlendi.

http://en.wikipedia.org/wiki/Catalan_number 6 Ekim 2011 tarihinde Wayback Machine sitesinde arşivlendi.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Pascal üçgeni</span>

Pascal üçgeni, matematikte binom katsayılarını içeren üçgensel bir dizidir. Fransız matematikçi Blaise Pascal'ın soyadıyla anılsa da Pascal'dan önce Hindistan, İran, Çin, Almanya ve İtalya'da matematikçiler tarafından çalışılmıştır.

Matematikte binom açılımı, iki sayının toplamının üslü ifadesinin cebirsel açılımıdır. Teoreme göre, (x + y)n formatında yazılmış bir polinom, b,c 0, b +c = n, axbyc formatındaki terimlerin toplamı şeklinde yazılabilir. Bu ifadede b,c,n N, b 0, c 0, b+c=n, a> 0 koşulları sağlanmalıdır.

<span class="mw-page-title-main">Trigonometrik fonksiyonlar</span>

Trigonometrik fonksiyonlar, matematikte bir açının işlevi olarak geçen fonksiyonlardır. Geometride üçgenleri incelerken ve periyodik olarak tekrarlanan olayları incelerken sıklıkla kullanılırlar. Genel olarak bir açısı belirli dik üçgenlerde herhangi iki kenarın oranı olarak belirtilirler, ancak birim çemberdeki belirli doğru parçalarının uzunlukları olarak da tanımlanabilirler. Daha çağdaş tanımlarda sonsuz seriler veya belirli bir türevsel denklemin çözümü olarak geçerler.

<span class="mw-page-title-main">Matris (matematik)</span>

Matematikte matris veya dizey, dikdörtgen bir sayılar tablosu veya daha genel bir açıklamayla, toplanabilir veya çarpılabilir soyut miktarlar tablosudur. Dizeyler daha çok doğrusal denklemleri tanımlamak, doğrusal dönüşümlerde çarpanların takibi ve iki parametreye bağlı verilerin kaydedilmesi amacıyla kullanılırlar. Dizeylerin toplanabilir, çıkartılabilir, çarpılabilir, bölünebilir ve ayrıştırılabilir olmaları, doğrusal cebir ve dizey kuramının temel kavramı olmalarını sağlamıştır.

Pauli matrisleri 2 × 2' lik, karmaşık sayılar içeren Hermisyen ve üniter matrislerden oluşan bir settir. Genellikle Yunan alfabesindeki 'sigma' (σ), harfiyle sembolize edilirler. Bu matrisler:

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

Matematikte zeta sabiti, bir tam sayının Riemann zeta fonksiyonunda yerine yazılmasıyla elde edilen sayıdır. Bu madde farklı tam sayı değerleri için zeta fonksiyonu özdeşlikleri içermektedir.

Tümleşik matematikte binom dönüşümü bir dizinin ileri farklarını hesaplamaya yarayan bir dizi dönüşümüdür. Kavram, binom dönüşümünün Euler dizisine uygulanması sonucu oluşan Euler dönüşümüyle yakından ilintilidir.

<span class="mw-page-title-main">Dirichlet eta işlevi</span>

Matematiğin analitik sayı kuramı alanında Dirichlet eta işlevi

<span class="mw-page-title-main">Riemann zeta işlevi</span>

Matematikte Riemann zeta işlevi , Alman matematikçi Bernhard Riemann tarafından 1859'da bulunmuş olan ve asal sayıların dağılımıyla olan ilişkisinden ötürü sayı kuramında önemli yeri bulunan seçkin bir işlevdir. İşlev; fizik, olasılık kuramı ve uygulamalı istatistikte de kullanılmaktadır.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

Matematiksel analizde Legendre fonksiyonları, aşağıdaki Legendre diferansiyel denkleminin çözümleridir.

 ;

Matematikte ters trigonometrik fonksiyonlar, tanım kümesinde bulunan trigonometrik fonksiyonların ters fonksiyonudur.

Successive Over-Relaxation (SOR) lineer denklem sistemlerini çözmek ve sonuca daha hızlı yakınsamak için sayısal lineer cebirde kullanılan bir çeşit Gauss-Seidel metodudur. Daha yavaş yakınsamalar içinse benzer bir metot olan iterative metot kullanılır.

Öklid'in teoremi, sayılar teorisinde temel bir ifade olup sonsuz sayıda asal sayı olduğunu ileri sürer. Teoremin iyi bilinen farklı ispatları bulunmaktadır.

Matematikte Euler sayıları, Taylor serisi açılımıyla tanımlanan bir En tam sayı dizisidir..

Aşağıdaki matematiksel seriler listesi, sonlu ve sonsuz toplamlar için formüller içerir. Toplamları değerlendirmek için diğer araçlarla birlikte kullanılabilir.

Matematik alanında, toplam veya genel toplam olarak sonuçlanan, toplananlar ya da toplamalar diye adlandırılan bir sayı dizisinin eklenme sürecine toplam/toplama denir. Sayıların yanı sıra, fonksiyonlar, vektörler, matrisler, polinomlar ve genelde "+" işareti ile tanımlanmış işleme sahip diğer tüm matematiksel nesne türleri de toplanabilir.

<span class="mw-page-title-main">Pisagor trigonometrik özdeşliği</span> sin² θ + cos² θ = 1

Pisagor trigonometrik özdeşliği, daha basit ifadeyle Pisagor özdeşliği olarak da adlandırılır, Pisagor teoremini trigonometrik fonksiyonlar cinsinden ifade eden bir özdeşliktir. Açıların toplam formülleri ile birlikte, sinüs ve kosinüs fonksiyonları arasındaki temel bağıntılardan biridir. Özdeşlik şu şekildedir: