İçeriğe atla

Casey teoremi

Matematikte, genelleştirilmiş Batlamyus teoremi olarak da bilinen Casey teoremi, adını İrlandalı matematikçi John Casey[1]'den alan Öklid geometrisindeki bir teoremdir.

Teoremin formülasyonu

, yarıçapı olan bir çember olsun. (sırasıyla) içinde yer alan kesişmeyen ve 'ya teğet olan dört çember olsun. , çemberlerin dış ortak çifte teğet (bitanjant)'inin uzunluğunu göstersin. Buna göre:[2] .

Dört çemberin hepsinin noktalara indirgendiği dejenere durumda, bunun tam olarak Batlamyus teoremi olduğuna dikkat edin.

İspat

Aşağıdaki kanıt Zacharias'a[3] atfedilebilir.[4] çemberinin yarıçapını ile belirtelim ve çember ile teğet noktasını da ile gösterelim. Çemberlerinin merkezleri için gösterimini kullanacağız. Pisagor teoreminden,

Bu uzunluğu, türünden ifade etmeye çalışacağız . üçgende kosinüs yasasına göre,

çemberleri birbirine teğet olduğundan:

, çemberinin üzerindeki bir nokta olsun. üçgeninde sinüs yasasına göre:

Bu nedenle,

ve bunları yukarıdaki formülde yerine koyarsak:

Ve son olarak, aradığımız uzunluk;

kirişler dörtgenine uygulanan orijinal Batlamyus teoreminin yardımıyla artık sol tarafı hesaplayabiliriz:

Diğer genellemeler

Görülebileceği gibi, dört çemberin büyük çemberin içinde olması gerekmiyor. Aslında, ona dışarıdan da teğet olabilirler. Bu durumda aşağıdaki değişiklik yapılmalıdır:[5]

Eğer , ikisi de 'nun aynı tarafından teğetse (her ikisi de içeriden veya her ikisi de dışarıdan), dış ortak teğetin uzunluğudur.

Eğer , 'ya farklı yönlerden teğetse (biri içeriden ve biri dışarıdan), iç ortak teğetin uzunluğudur.

Casey teoreminin tersi de doğrudur.[5] Yani, eşitlik geçerliyse, çemberler ortak bir çembere teğettir.

Uygulamalar

Casey teoremi ve tersi, Öklid geometrisindeki çeşitli ifadeleri kanıtlamak için kullanılabilir. Örneğin, Feuerbach teoreminin bilinen en kısa kanıtı[2] :411 Casey teoreminin tersini kullanır.

Notlar

  1. ^ O'Connor, John J.; Robertson, Edmund F., "John Casey", MacTutor Matematik Tarihi arşivi 
  2. ^ a b Casey (1866). "On the Equations and Properties: (1) of the System of Circles Touching Three Circles in a Plane; (2) of the System of Spheres Touching Four Spheres in Space; (3) of the System of Circles Touching Three Circles on a Sphere; (4) of the System of Conics Inscribed to a Conic, and Touching Three Inscribed Conics in a Plane". Proceedings of the Royal Irish Academy. 9: 396-423. 
  3. ^ Zacharias (1942). "Der Caseysche Satz". Jahresbericht der Deutschen Mathematiker-Vereinigung. 52: 79-89. 
  4. ^ Hoofdstukken uit de Elementaire Meetkunde. (translation by Reinie Erné as Topics in Elementary Geometry, Springer 2008, of the second extended edition published by Epsilon-Uitgaven 1987). 1944. 
  5. ^ a b Modern Geometry. Houghton Mifflin, Boston (republished facsimile by Dover 1960, 2007 as Advanced Euclidean Geometry). 1929. 

Dış bağlantılar

İlave okumalar

Kaynakça

  • Casey, J. (1866). "On the Equations and Properties: (1) of the System of Circles Touching Three Circles in a Plane; (2) of the System of Spheres Touching Four Spheres in Space; (3) of the System of Circles Touching Three Circles on a Sphere; (4) of the System of Conics Inscribed to a Conic, and Touching Three Inscribed Conics in a Plane". Proceedings of the Royal Irish Academy. 9: 396-423. JSTOR 20488927. 
  • Zacharias, M. (1942). "Der Caseysche Satz". Jahresbericht der Deutschen Mathematiker-Vereinigung. 52: 79-89. 
  • Bottema, O. (1944). Hoofdstukken uit de Elementaire Meetkunde. (translation by Reinie Erné as Topics in Elementary Geometry, Springer 2008, of the second extended edition published by Epsilon-Uitgaven 1987). 
  • Johnson, Roger A. (1929). Modern Geometry. Houghton Mifflin, Boston (republished facsimile by Dover 1960, 2007 as Advanced Euclidean Geometry). 

İlgili Araştırma Makaleleri

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

Açısal frekans periyodik harekette birim zaman içinde kaç radyan olduğunun ölçüsüdür.

Admittans elektrik mühendisliğinde karmaşık iletkenlik anlamına gelir. Admittans ile empedans çarpımı 1 dir. Admittans Y ile gösterilir. Birimi MKS sisteminde siemens (S)'dir. Kimi eski kitaplarda S yerine mho birimi de kullanılır.

<span class="mw-page-title-main">Euler spirali</span> düzlemsel eğri

Euler spirali, eğimi eğrinin uzunluğuyla doğrusal olarak degişen bir eğridir. Euler spiralleri yaygın olarak spiros, clothoids veya Cornu spiralleri olarak da adlandırılır. Euler spirallerinin kırınım hesaplamalarında uygulamaları vardır. Genellikle demiryolu ve karayolu mühendisliklerinde teğet eğrisi ve dairesel eğri arasındaki geometriyi bağdaştırmaya ve aktarmaya yarayan geçiş eğrisi olarak kullanılır. Teğet eğrisi ve dairesel eğri arasındaki geçiş eğrisinin eğimindeki lineer değişim prensibi Euler spiralinin geometrisini belirler:

Breit denklemi, Gregory Breit tarafından 1929'da Dirac denklemine dayalı olarak türetilmiş kökler kuralının ilk kuralına göre iki ya da daha fazla kütleli spini -1/2 olan parçacıkların elektromanyetizma açısından etkileşimini tanımlayan rölativistik dalga denklemidir. Manyetik etkileşimlerin ve  kuralına göre gecikme etkisinin nedeni açıklar. Diğer kuantum elektrodinamik etkileri ihmal edildiğinde, bu denklemin deney ile iyi bir uyum içinde olduğu görülmüştür. Bu denklem başlangıçta Darwin Lagrangian tarafından türetildi ancak daha sonra Wheeler-Feynman emme teorisi ve en sonunda kuantum elektrodinamiği tarafından doğrulandı.

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

<span class="mw-page-title-main">Brianchon teoremi</span>

Geometride Brianchon teoremi, bir konik kesit etrafındaki bir altıgen ile sınırlandırıldığında, ana köşegenlerinin tek bir noktada kesiştiğini belirten bir teoremdir. Adını Fransız matematikçi Charles Julien Brianchon'dan (1783–1864) almıştır.

Carnot teoremi, bir üçgenin iç teğet çemberi ve çevrel çemberinin yarıçaplarının uzunlukları ile çevrel çemberin merkezinden üçgenin üç kenarına olan mesafelerin toplamı arasındaki ilişkiyi göstermektedir. Fransız matematikçi Lazare Nicolas Marguerite Carnot tarafından bulunmuştur.

Geometride Descartes teoremi, her dört öpüşen veya karşılıklı teğet çember için, çemberlerin yarıçaplarının belirli bir ikinci dereceden denklemi sağladığını belirtir. Bu denklemi çözerek, verilen üç karşılıklı teğet çembere teğet olan dördüncü bir çember oluşturulabilir. Teorem adını, 1643'te teoremi tanımlayan René Descartes'tan almıştır.

<span class="mw-page-title-main">Euler teoremi (geometri)</span>

Geometride, Euler teoremi, üçgenin çevrel çemberinin merkezi ve iç teğet çemberinin merkezi arasındaki uzunluğunun aşağıdaki şekilde ifade edildiğini belirtir:

<span class="mw-page-title-main">Çift merkezli çokgen</span>

Geometride, çift merkezli (bicentric) çokgen, teğet bir çokgendir ve aynı zamanda döngüsel yani kirişler dörtgenidir - yani, çokgenin her köşesinden geçen bir çevrel çember içine çizilmiştir. Tüm üçgenler ve tüm düzgün çokgenler çift merkezlidir. Öte yandan, kenarları eşit olmayan bir dikdörtgen çift merkezli değildir, çünkü hiçbir çember dört kenara da teğet olamaz.

<span class="mw-page-title-main">Feuerbach noktası</span>

Üçgen geometrisinde, üçgenin iç çemberi ve dokuz nokta çemberi, üçgenin Feuerbach noktasında birbirine içten teğettir. Feuerbach noktası bir üçgen merkezidir, yani tanımı üçgenin yerleşimine ve ölçeğine bağlı değildir. Clark Kimberling'in Üçgen Merkezleri Ansiklopedisi'nde X(11) olarak listelenmiştir ve adını Alman geometrici Karl Wilhelm Feuerbach'tan almıştır.

<span class="mw-page-title-main">Çift merkezli dörtgen</span>

Öklid geometrisinde, bir çift merkezli dörtgen, hem bir iç teğet çembere hem de çevrel çembere sahip olan bir dışbükey (konveks) dörtgendir. Bu çemberlerin çevreleri, yarıçapları ve merkezlerine sırasıyla iç çap (inradius) ve çevrel çap (circumradius), iç merkez (incenter) ve çevrel merkez (circumcenter) denir. Tanımdan, çift merkezli dörtgenlerin hem teğetler dörtgeninin hem de kirişler dörtgeninin tüm özelliklerine sahip olduğu anlaşılmaktadır. Bu dörtgenler için diğer isimler kiriş-teğet dörtgeni ve iç teğet ve dış teğet dörtgenidir. Ayrıca nadiren çift çemberli dörtgen ve çift işaretlenmiş dörtgen olarak adlandırılmıştır.

<span class="mw-page-title-main">Harcourt teoremi</span>

Geometride Harcourt teoremi, kenar uzunluklarının bir fonksiyonu olarak ve kendi iç teğet çemberine teğet olan rastgele bir doğrudan köşelerinin dikey uzunluklarının bir fonksiyonu olarak üçgenin alanı ile ilgili bir formüldür. Teorem adını İrlandalı bir profesör olan J. Harcourt'tan almıştır.

<span class="mw-page-title-main">Kesişen kirişler teoremi</span>

Kesişen kirişler teoremi veya sadece kiriş teoremi, bir çember içinde kesişen iki kiriş tarafından oluşturulan dört doğru parçasının ilişkisini tanımlayan temel geometrideki bir ifadedir. Her bir kirişteki doğru parçalarının uzunluklarının çarpımlarının eşit olduğunu belirtir. Öklid'in Unsurlarının 3. kitabının 35. önermesidir.

<span class="mw-page-title-main">Kesişen kesenler teoremi</span>

Kesişen kesen (sekant) teoremi veya sadece kesen (sekant) teoremi, kesişen iki sekant ve ilişkili çember tarafından oluşturulan doğru parçalarının ilişkisini açıklayan temel bir geometri teoremidir.

Geometride, bir çokgenin yarı çevresi, çevre uzunluğunun yarısıdır. Çevreden doğrudan türetilebilmesine rağmen, yarı çevre üçgenler ve diğer şekiller için kullanılan formüllerde oldukça sık görülür ve ayrı/özel bir isim verilir. Yarı çevre, bir formülün parçası olarak ortaya çıktığında, genellikle s harfiyle gösterilir.

<span class="mw-page-title-main">Kirişler dörtgeni</span> tüm köşeleri tek bir çember üzerinde yer alan dörtgen

Öklid geometrisinde, bir kirişler dörtgeni veya çembersel dörtgen veya çevrimsel dörtgen, köşeleri tek bir çember üzerinde bulunan bir dörtgendir. Bu çembere çevrel çember denir ve köşelerin aynı çember içinde olduğu söylenir. Çemberin merkezi ve yarıçapı sırasıyla çevrel merkez ve çevrel yarıçap olarak adlandırılır. Bu dörtgenler için kullanılan diğer isimler eş çember dörtgeni ve kordal dörtgendir, ikincisi, dörtgenin kenarları çemberin kirişleri olduğu içindir. Genellikle dörtgenin dışbükey (konveks) olduğu varsayılır, ancak çapraz çevrimsel dörtgenler de vardır. Aşağıda verilen formüller ve özellikler dışbükey durumda geçerlidir.

Adını Fransız matematikçi Joseph Diez Gergonne'dan alan Gergonne noktası, bir üçgenin iç kısmındaki ayırt edici bir noktadır.

<span class="mw-page-title-main">Fuhrmann üçgeni</span> rastgele üçgene dayalı özel üçgen

Adını Wilhelm Fuhrmann (1833-1904)'dan alan Fuhrmann üçgeni, verilen rastgele bir üçgene dayanan özel bir üçgendir.