İçeriğe atla

Carnot teoremi (iç yarıçap, dış yarıçap)

Carnot teoremi, bir üçgenin iç teğet çemberi ve çevrel çemberinin yarıçaplarının uzunlukları ile çevrel çemberin merkezinden üçgenin üç kenarına olan mesafelerin toplamı arasındaki ilişkiyi göstermektedir. Fransız matematikçi Lazare Nicolas Marguerite Carnot tarafından bulunmuştur.

Teoremin açıklaması

Öklid geometrisinde, Carnot teoremi çevrel merkez D'den herhangi bir ABC üçgeninin kenarlarına işaretli mesafelerin toplamının şöyle olduğunu belirtir:

burada r üçgenin iç teğet çemberinin çapı ve R ise çevrel çemberinin çapıdır. Burada mesafelerin işareti, ancak ve ancak açık doğru parçası DX (X = F, G, H) üçgenin tamamen dışında yer alıyorsa, negatif kabul edilir. Şekilde, DF negatiftir ve hem DG hem de DH pozitiftir.

Geniş açılı üçgen Dar açılı üçgen

Teorem, adını Fransız matematikçi Lazare Carnot'dan (1753 – 1823) almıştır. Aynı çember içinde bulunan (concyclic) çokgenler için Japon teoreminin bir kanıtında kullanılır.

İspatlar

Herhangi bir 'de, çevrel çemberin merkezi 'dan kenarlara olan (uygun şekilde işaretlenmiş) mesafelerin cebirsel toplamı, çevrel çemberin ve iç teğet çemberin yarıçapların toplamı olan 'ye eşittir.

.

Dar üçgenlerde, çevre merkezi daima üçgenin içinde bulunur. Bu durumda, , ve 'nin üç doğru parçası tamamen üçgenin içinde yer alır. Açılardan biri genişse, çevrel çemberin merkezi üçgenin dışına düşer. Doğru parçalarından biri (geniş açının karşısındaki tarafa karşılık gelen) tamamen dışarıda, diğer iki doğru parçası ise üçgenin yalnızca kısmen dışında uzanır. Yukarıdaki toplamda, üçgenin içini kesen parçalar artı işareti ile, dışta kalan taraf eksi işareti ile alınır. , ve doğru parçaları, , ve kenarlarındaki tabanlarla , ve üçgenlerinin yükseklikleri olarak hizmet eder. İşaret kuralı, bu üçgenlerin alanlarının (uygun işaretlerle birlikte alındığında) her zaman alanını oluşturmasını garanti eder.

İspat 1

Carnot teoreminin ispatı

Aşağıdaki ispat sadece dar açılı üçgen durumunu ele almış olup, diğer durumlar için de benzer adımlar izlenebilir.

İç teğet çemberin yarıçapı için aşağıdaki ifade her zaman doğrudur:

.

Yukarıdaki ifadeden,

.

yazılabilir. Bu nedenle,

(*) 'dir.

Şimdi sırayla bir açıklama yapalım. , üçgeninin çevrel çemberinin merkezi olmak üzere, ikizkenar üçgeninde, 'dir. Ve benzer şekilde, ve 'dir. Bu bilgiyle sahip olduğumuzda, benzer (dik açılı) üçgenlerin birkaç üçlüsünü düşünebiliriz:

  • , ve (veya eşit olan )
  • , ve (veya eşit olan )
  • , ve (veya eşit olan )

İlk üçlüden aşağıdakini türetebiliriz:

bu aşağıdaki sonuca ulaştırır:

Benzer şekilde, iki ek özdeşlik elde ederiz:

Sadeleştirmeden sonra üç eşitlik taraf tarafa toplanırsa:

.

elde edilir. Bunu, (*) ifadesi ile toplayıp ifadesine bölersek ispatı tamamlamış oluruz.

İspat 2

Carnot teoreminin ispatı

Bu ispat için gösterimlerde bir değişiklik gerektiren değiştirilmiş bir şekil üzerinden gidilecektir. Bu kanıt Vaggelis Stamatiadis'e aittir.

, , dörtgenleri, Batlamyus teoreminin uygulanmasına imkan veren kirişler dörtgenidir:

,
,

bu aşağıdaki şekilde yazılabilir:

veya,

.

Diyelim ki, açısı geniş açı ise, uzunluklar arasındaki ilişki şeklinde ifade edilir.

Konuyla ilgili yayınlar

  • Garreau, G. A. (1946). 1868. Analytical Proof of the Theorems of Carnot and Pascal. The Mathematical Gazette, 30(288), ss. 35-36.
  • Ibort, A., de León, M., Lacomba, E. A., Marrero, J. C., de Diego, D. M., & Pitanga, P. (2001). Geometric formulation of Carnot's theorem. Journal of Physics A: Mathematical and General, 34(8), 1691.
  • Ðorđe Baralić. (2013), Around the Carnot theorem, Makale 16 Ekim 2020 tarihinde Wayback Machine sitesinde arşivlendi.

Dış bağlantılar

Kaynaklar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Sinüs teoremi</span> Öklid geometrisinde üçgenlerle ilgili bir teorem

Sinüs teoremi, bir çembersel üçgende bir kenar ve bu kenar karşısındaki açının sinüsleri oranı sabittir. Sinüs, dik açılı üçgenlerde dik olmayan bir açının karşısında kalan dik kenar ile hipotenüsün birbirine oranıdır.

<span class="mw-page-title-main">Ceva teoremi</span> Öklid düzlem geometrisinde bir üçgenin kenar doğru parçası çiftlerinin çarpımlarının oranının bire eşit olduğunu belirten teorem

Ceva Teoremi, herhangi bir ABC üçgeni verildiğinde, A, B ve C'den üçgenin zıt kenarlarına doğru olan doğru parçalarının üçgenin her iki kenarında oluşan doğru parçası çiftlerinin oranlarının çarpımı 1'e eşit olduğunda tek noktada kesiştiğini belirtir. Teorem adını İtalyan matematikçi Giovanni Ceva'dan alır.

<span class="mw-page-title-main">Çevrel çember</span>

Çevrel çember, geometride, bir çokgenin tüm köşelerinden geçen çember. Bu çemberin merkezi çevrel özek olarak isimlendirilir.

<span class="mw-page-title-main">Brocard noktaları</span>

Brocard noktaları, geometride bir üçgen içinde yer alan özel noktalardır. Fransız matematikçi Henri Brocard'ın çalışmalarından dolayı bu adı almıştır.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

<span class="mw-page-title-main">Açıortay teoremi</span> Bir üçgeni bölen iki parçanın göreli uzunlukları hakkında

Geometride açıortay teoremi, bir üçgenin kenarının karşı açıyı ikiye bölen bir çizgiyle bölündüğü iki parçanın göreli uzunluklarıyla ilgilidir. Göreli uzunluklarını, üçgenin diğer iki kenarının göreli uzunluklarına eşitler.

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

<span class="mw-page-title-main">Eş iç teğet çemberler teoremi</span>

Geometride, eş iç teğet çemberler teoremi bir Japon Sangaku'sundan türetilir ve aşağıdaki yapıya ilişkindir: belirli bir noktadan belirli bir çizgiye bir dizi ışın çizilir, öyle ki bitişik ışınlar ve taban çizgisi tarafından oluşturulan üçgenlerin iç teğet çemberleri eşittir. Çizimde eş mavi çemberler, açıklandığı gibi ışınlar arasındaki mesafeyi tanımlar.

<span class="mw-page-title-main">Carnot teoremi (konikler)</span>

Adını Fransız matematikçi Lazare Carnot'dan alan Carnot'un teoremi, konik kesitler ve üçgenler arasındaki bir ilişkiyi tanımlar.

Öklid geometrisinde, Erdős–Mordell eşitsizliği herhangi bir üçgeni ve içindeki noktası için, 'den kenarlara olan uzunlukların toplamının, 'den köşelere olan uzunlukların toplamının yarısına eşit veya daha az olduğunu belirten teoremdir. Teorem, adını Macar matematikçi Paul Erdős ve Amerika doğumlu İngiliz matematikçi Louis Mordell'den almıştır. Erdős (1935) eşitsizliği kanıtlama problemini ortaya attı; iki yıl sonra tarafından bir kanıt sağlandı. Ancak bu çözüm çok basit değildi. Sonraki basit ispatlar daha sonra Kazarinoff (1957), Bankoff (1958) ve Alsina & Nelsen (2007) tarafından verilmiştir.

<span class="mw-page-title-main">Euler teoremi (geometri)</span>

Geometride, Euler teoremi, üçgenin çevrel çemberinin merkezi ve iç teğet çemberinin merkezi arasındaki uzunluğunun aşağıdaki şekilde ifade edildiğini belirtir:

<span class="mw-page-title-main">Feuerbach noktası</span>

Üçgen geometrisinde, üçgenin iç çemberi ve dokuz nokta çemberi, üçgenin Feuerbach noktasında birbirine içten teğettir. Feuerbach noktası bir üçgen merkezidir, yani tanımı üçgenin yerleşimine ve ölçeğine bağlı değildir. Clark Kimberling'in Üçgen Merkezleri Ansiklopedisi'nde X(11) olarak listelenmiştir ve adını Alman geometrici Karl Wilhelm Feuerbach'tan almıştır.

<span class="mw-page-title-main">Çift merkezli dörtgen</span>

Öklid geometrisinde, bir çift merkezli dörtgen, hem bir iç teğet çembere hem de çevrel çembere sahip olan bir dışbükey (konveks) dörtgendir. Bu çemberlerin çevreleri, yarıçapları ve merkezlerine sırasıyla iç çap (inradius) ve çevrel çap (circumradius), iç merkez (incenter) ve çevrel merkez (circumcenter) denir. Tanımdan, çift merkezli dörtgenlerin hem teğetler dörtgeninin hem de kirişler dörtgeninin tüm özelliklerine sahip olduğu anlaşılmaktadır. Bu dörtgenler için diğer isimler kiriş-teğet dörtgeni ve iç teğet ve dış teğet dörtgenidir. Ayrıca nadiren çift çemberli dörtgen ve çift işaretlenmiş dörtgen olarak adlandırılmıştır.

<span class="mw-page-title-main">Geometrik ortalama teoremi</span> Dik üçgenler hakkında bir teorem

Dik üçgen yükseklik teoremi veya geometrik ortalama teoremi, bir dik üçgendeki hipotenüs üzerindeki yükseklik uzunluğu ile hipotenüs üzerinde oluşturduğu iki doğru parçası arasındaki ilişkiyi tanımlayan temel geometrinin bir sonucudur. İki doğru parçasının geometrik ortalamasının yüksekliğe eşit olduğunu belirtir.

<span class="mw-page-title-main">Kesişen kirişler teoremi</span>

Kesişen kirişler teoremi veya sadece kiriş teoremi, bir çember içinde kesişen iki kiriş tarafından oluşturulan dört doğru parçasının ilişkisini tanımlayan temel geometrideki bir ifadedir. Her bir kirişteki doğru parçalarının uzunluklarının çarpımlarının eşit olduğunu belirtir. Öklid'in Unsurlarının 3. kitabının 35. önermesidir.

<span class="mw-page-title-main">Kesişen kesenler teoremi</span>

Kesişen kesen (sekant) teoremi veya sadece kesen (sekant) teoremi, kesişen iki sekant ve ilişkili çember tarafından oluşturulan doğru parçalarının ilişkisini açıklayan temel bir geometri teoremidir.

Geometride, bir çokgenin yarı çevresi, çevre uzunluğunun yarısıdır. Çevreden doğrudan türetilebilmesine rağmen, yarı çevre üçgenler ve diğer şekiller için kullanılan formüllerde oldukça sık görülür ve ayrı/özel bir isim verilir. Yarı çevre, bir formülün parçası olarak ortaya çıktığında, genellikle s harfiyle gösterilir.

<span class="mw-page-title-main">Routh teoremi</span> Üçgenlerin alanları ile ilgili bir Öklid geometrisi teoremi

Geometride, Routh teoremi verilen bir üçgen ile üç cevianın ikili kesişimlerinden oluşan bir üçgen arasındaki alanların oranını belirler. Teorem, eğer üçgeninde , ve noktaları, , ve doğru parçaları üzerindeyse, o zaman , ve olmak üzere, , ve cevianları tarafından oluşturulan işaretli üçgenin alanı şöyle bulunur:

Adını Fransız matematikçi Joseph Diez Gergonne'dan alan Gergonne noktası, bir üçgenin iç kısmındaki ayırt edici bir noktadır.

<span class="mw-page-title-main">Fuhrmann üçgeni</span> rastgele üçgene dayalı özel üçgen

Adını Wilhelm Fuhrmann (1833-1904)'dan alan Fuhrmann üçgeni, verilen rastgele bir üçgene dayanan özel bir üçgendir.