İçeriğe atla

Carnot teoremi (dikmeler)

Üçgenin kenarlarındaki dikmeler için Carnot teoremi:
mavi alan = kırmızı alan

Adını Fransız matematikçi Lazare Carnot'dan alan Carnot teoremi, üçgenin (uzatılmış) kenarlarına dik olan üç doğrunun ortak bir kesişme noktası için gerek ve yeter koşulu tanımlar. Teorem ayrıca Pisagor teoreminin bir genellemesi olarak düşünülebilir.

Teoremin açıklaması

Kenarları olan bir üçgeni için, üçgenin kenarlarına dik olan ve ortak bir noktasında kesişen üç doğru düşünün. Eğer kenarları üzerindeki bu üç dikmenin ayak noktaları ise, ardından aşağıdaki denklem geçerli olur:

Yukarıdaki ifadenin tersi de doğrudur, yani bir üçgenin üç kenarındaki üç dikmenin ayak noktaları için denklem geçerliyse, o zaman bu dikmeler ortak bir noktada kesişirler. Bu nedenle denklem, gerekli ve yeterli bir koşulu sağlar.

Özel durumlar

Eğer üçgeni noktasında bir dik açıya sahipse ve kesişme noktası , veya üzerinde bulunuyorsa, yukarıdaki denklem Pisagor teoremini verir. Örneğin eğer noktası, ile çakışırsa bu, , , , , ve olduğu sonucunu doğurur. Bu nedenle, yukarıdaki denklem haline yani Pisagor teoremine dönüşür.

Diğer bir sonuç, bir üçgenin dik açıortaylarının ortak bir noktada kesişme özelliğidir. Dikey açı ortaylar söz konusu olduğunda , ve olur ve bu nedenle yukarıdaki denklem geçerlidir. Bu, üç dikey açıortayın da aynı noktada kesiştiği anlamına gelir.

İspat

Carnot teoreminin ispatı

Şekilden görülebileceği gibi dik açıortayların ayakları olarak gösterilsin.

Carnot Teoremi, aşağıdaki ifade doğrulandığında istenen tutarlılığı garanti eder.

Öncelikle ifadesinin ilk kısmını ele alalım:

olduğundan, yukarıdaki ifade,

şeklinde yazılabilir. Aynı şekilde,

Bu nedenle, aşağıdaki ifadeye dönüşür:

sağ tarafta "" yerine "" yazılması, vb. gibi değişiklerle ve aşağıdaki ifadeden faydalanırsak:

"Noktanın Kuvveti" teoremi, noktasından geçen bir doğru ve noktalarında çemberi ile karşılaşırsa ve 'ye değil, yalnızca ve 'ye bağlı bir değerdir. Bu değer, 'nin 'ye göre kuvveti olarak adlandırılır.

ifadesinde, teriminin değeri 'ya göre noktasının kuvvetidir; ama değeri de öyledir. Bu nedenle her iki terim iptal edilir. Benzer şekilde, ('nin 'ye göre kuvveti) ve ('nin 'ye göre kuvveti). Tüm terimler birbirini götürür, böylece Carnot Teoremine ulaşılır: şekildeki doğrular tek noktada kesişir.

Kaynakça

Dış bağlantılar

Konuyla ilgili yayınlar

  • Prof. Ion Pătrașcu, The Dual of the Orthopole Theorem, Makale 10 Kasım 2020 tarihinde Wayback Machine sitesinde arşivlendi.
  • Oğuzhan Demirel & Emine Soytürk, (2008), The Hyperbolic Carnot Theorem in the Poincare Disc Model of Hyperbolic Geometry, Novi Sad J. Math., Vol. 38, No. 2, ss. 33-39, Makale 10 Kasım 2020 tarihinde Wayback Machine sitesinde arşivlendi.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Üçgen</span> üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimi

Bir üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimidir. Üçgene müselles ve üçbucak da denir.

<span class="mw-page-title-main">Ceva teoremi</span> Öklid düzlem geometrisinde bir üçgenin kenar doğru parçası çiftlerinin çarpımlarının oranının bire eşit olduğunu belirten teorem

Ceva Teoremi, herhangi bir ABC üçgeni verildiğinde, A, B ve C'den üçgenin zıt kenarlarına doğru olan doğru parçalarının üçgenin her iki kenarında oluşan doğru parçası çiftlerinin oranlarının çarpımı 1'e eşit olduğunda tek noktada kesiştiğini belirtir. Teorem adını İtalyan matematikçi Giovanni Ceva'dan alır.

<span class="mw-page-title-main">Açıortay</span>

Açıortay, geometride bir açıyı iki eşit açı şeklinde bölen yapıdır. Bir açıya teğet tüm çemberler çizilerek merkezleri birleştirilirse, o açının açıortayı elde edilir. Bu nedenle açıortaylardan açının kollarına indirilen dikmeler, o çemberlerden birinin merkezinden teğetlere inilen yarıçap dikmeleri olacağından, dikmeler birbirine eşit olur. Her iki kolda oluşan üçgenler de birbirine eşit olacağından, dikmelerin açıortay kollarını kestiği noktalar ile açının bulunduğu köşeye olan uzaklıklar eşit olur.

Aşağıda 1 ile 999 arası NGC cismi listelenmiştir. Diğer NGC cisimleri için NGC cisimleri dizini'ndeki alt başlıklara bakınız.

<span class="mw-page-title-main">Menelaus teoremi</span> Bir üçgenin her bir kenar doğrusundan tepe noktası olmayan birer nokta olmak üzere üç noktanın, ancak ve ancak her üç kenar doğrusu üzerinde belirledikleri işaretli oranların çarpımı -1 ise eş doğrusal olduğunu belirten Öklid geometri

İskenderiyeli Menelaus'a izafe edilen Menelaus teoremi düzlemsel geometride üçgenler üzerine bir teoremdir. , ve noktalarından oluşan üçgeninde , ve doğruları üzerinde bulunan ve üçgenin köşelerinden ayrık , ve noktalarının aynı doğru üzerinde olabilmesi ancak ve ancak:

<span class="mw-page-title-main">Çevrel çember</span>

Çevrel çember, geometride, bir çokgenin tüm köşelerinden geçen çember. Bu çemberin merkezi çevrel özek olarak isimlendirilir.

<span class="mw-page-title-main">Brocard noktaları</span>

Brocard noktaları, geometride bir üçgen içinde yer alan özel noktalardır. Fransız matematikçi Henri Brocard'ın çalışmalarından dolayı bu adı almıştır.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

<span class="mw-page-title-main">Henry B. Walthall</span> Amerikalı sinema oyuncusu (1878 – 1936)

Henry Brazeale Walthall, Amerikalı sanatçı ve film oyuncusudur. D. W. Griffith'in yapımcısı olduğu The Birth of a Nation (1915) ile ünlendi.

<span class="mw-page-title-main">Pegasus Hava Yolları uçuş noktaları listesi</span> Vikimedya liste maddesi

Aşağıdaki liste, 26 Ağustos 2024 itibarı ile Pegasus Hava Yollarının uçuş gerçekleştirdiği noktaları göstermektedir.

<span class="mw-page-title-main">Açıortay teoremi</span> Bir üçgeni bölen iki parçanın göreli uzunlukları hakkında

Geometride açıortay teoremi, bir üçgenin kenarının karşı açıyı ikiye bölen bir çizgiyle bölündüğü iki parçanın göreli uzunluklarıyla ilgilidir. Göreli uzunluklarını, üçgenin diğer iki kenarının göreli uzunluklarına eşitler.

<span class="mw-page-title-main">Crossbar (Pasch) teoremi</span> Diğer iki ışın arasındaki bir ışın, ilk iki ışın arasındaki herhangi bir çizgi parçasını keser.

Geometride Crossbar (Pasch) teoremi, ışını ışını ile ışını arasındaysa, ışınının doğrusu parçasını keseceğini belirtir.

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

<span class="mw-page-title-main">İngiliz bayrağı teoremi</span>

Öklid geometrisinde, İngiliz bayrağı teoremi, dikdörtgeni içinde bir noktası seçilirse, 'den dikdörtgenin iki karşıt köşesine olan Öklid mesafelerinin karelerinin toplamının, diğer iki karşıt köşenin toplamına eşit olduğunu söyler. Denklem olarak aşağıdaki şekilde gösterilir:

<span class="mw-page-title-main">Droz-Farny doğru teoremi</span> Rastgele bir üçgenin ortasından geçen iki dik doğrunun özelliği hakkında teorem

Öklid geometrisinde, Droz-Farny doğru teoremi, keyfi bir üçgenin yükseklik merkezinden (ortosantr) geçen iki dik doğrunun bir özelliğidir.

<span class="mw-page-title-main">Carnot teoremi (konikler)</span>

Adını Fransız matematikçi Lazare Carnot'dan alan Carnot'un teoremi, konik kesitler ve üçgenler arasındaki bir ilişkiyi tanımlar.

<span class="mw-page-title-main">Harcourt teoremi</span>

Geometride Harcourt teoremi, kenar uzunluklarının bir fonksiyonu olarak ve kendi iç teğet çemberine teğet olan rastgele bir doğrudan köşelerinin dikey uzunluklarının bir fonksiyonu olarak üçgenin alanı ile ilgili bir formüldür. Teorem adını İrlandalı bir profesör olan J. Harcourt'tan almıştır.

Bu, çok sayıda saygın video oyunu gazetecisinin veya dergisinin tüm zamanların en iyileri arasında saydığı video oyunlarının bir listesidir. Burada listelenen oyunlar, editör kadroları tarafından seçilen, farklı yayınlardan en az altı ayrı "tüm zamanların en iyi/en büyük" listesine dahil edilmiştir.

Geometride, bir çokgenin yarı çevresi, çevre uzunluğunun yarısıdır. Çevreden doğrudan türetilebilmesine rağmen, yarı çevre üçgenler ve diğer şekiller için kullanılan formüllerde oldukça sık görülür ve ayrı/özel bir isim verilir. Yarı çevre, bir formülün parçası olarak ortaya çıktığında, genellikle s harfiyle gösterilir.

<span class="mw-page-title-main">Ters Pisagor teoremi</span> Öklid geometrisinde dik üçgenlerle ilgili bir teorem

Geometride, ters Pisagor teoremi aşağıdaki gibidir: