İçeriğe atla

Carnot çevrimi

Carnot çevrimi, Sadi Carnot tarafından 1820'lerde ortaya konmuş özel bir termodinamik çevrimdir ve Benoît Paul Émile Clapeyron tarafından 1830 ve 1840'lı yıllarda geliştirilmiştir.

Her termodinamik sistem özel bir durum içinde varolmuştur. Sistem, farklı durumları sırası ile takip ediyor ve en sonunda önceki haline geri dönüyorsa termodinamik bir çevrim oluşur. Bu çevrim boyunca işlem içinde, sistem çevresine iş yapabilir, bu yolla bir ısı makinesi olarak rol oynayabilir.

Bir ısı makinesi enerjinin sıcak bölgeden, soğuk bölgeye aktarılmasını sağlar, bu işlem içinde enerjinin bir kısmı mekanik işe dönüşür. Çevrim tersinirdir (yani tersine de gerçekleşebilir). Sistem bir dış kuvvet ile çalışabilir ve işlem içinde soğuk sistemden, sıcak sisteme ısı aktarılabilir, bu şekilde bir ısı makinesinden çok bir soğutucu olarak çalışır.

Carnot çevrimi, termodinamik çevrimin özel bir tipidir. Özeldir çünkü, verilen ısı enerjisinin işe çevrilme miktarı ya da tersi için (verilen işin soğutma amaçları için kullanımı) mümkün olan en verimli çevrimdir.

Carnot çevrimi ısı makinesi olarak şu adımları takip eder :

Bir ısı makinesi olarak çalışan bir Carnot çevrimi, sıcaklık – entropi diyagramı üzerinde gösterilmiştir. Çevrim TH ve TC sıcaklıkları arasında yer alır. Dikey eksen sıcaklık, yatay eksen entropidir.
  1. TH sıcaklığındaki ’’sıcak’’ gazın tersinir izotermal genişlemesi (İzotermal ısı ilavesi): Bu adım esnasında, genişleyen (hacmi artan) gaz pistonun iş yapmasına neden olur. Gaz genişlemesi, yüksek sıcaklıktan ısının emilmesi ile ilerler. (A-B arası)
  2. Gazın tersinir adyabatik genişlemesi: Bu adımda piston ve silindirin ısıl olarak yalıtılmış olduğu kabul edilir, bu nedenle ısı kaybı yoktur. Gaz genişlemeye ve iş yapmaya devam eder. Gaz genişleme nedeni ile TC sıcaklığına soğur. (B-C arası)
  3. TC sıcaklığındaki ’’soğuk’’ gazın tersinir izotermal sıkıştırılması (İzotermal ısı atılması): Bu anda çevresine iş vermiş durumdaki gaz, düşük sıcaklığa doğru ısı çıkışına neden olur. (C-D arası)
  4. Gazın tersinir adyabatik olarak sıkıştırılması:Yine piston ve silindir ısıl olarak yalıtılmış kabul edilir. Bu adımda yapılan iş gaz üzerinde sıkıştırılmaya ve sıcaklığının TH sıcaklığına yükselmesine sebep olur. Bu noktada gaz ilk basamaktaki başlangıç haline dönmüştür. (D-A arası)

Carnot çevriminin mümkün olan en verimli çevrim olmasının sebebi, tamamen tersinir adımlardan oluşmasıdır. Adımların hiçbirinde, aralarında sıcaklık farkı bulunan iki sistem arasında ısı alış-verişi gerçekleşmez. Dolayısıyla, toplamdaki entropi değişimi sıfırdır.

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Termodinamik</span> enerji bilimi

Termodinamik; ısı, iş, sıcaklık ve enerji arasındaki ilişki ile ilgilenen bilim dalıdır. Basit bir ifadeyle termodinamik, enerjinin bir yerden başka bir yere ve bir biçimden başka bir biçime transferi ile ilgilenir. Bu süreçteki anahtar kavram, ısının, belirli bir mekanik işe denk gelen bir enerji biçimi olmasıdır.

<span class="mw-page-title-main">Soğutma çevrimi</span>

Bir soğutma çevrimi, soğutucu bir akışkanın ısıyı emmesi ve daha sonra yayması ile oluşan değişikliklerin tanımlandığı, bir soğutucu içinde gerçekleşen çevrimdir.

<span class="mw-page-title-main">Buhar makinesi</span> Buharın içinde var olan ısı enerjisini, mekanik enerjiye dönüştüren bir dıştan yanmalı motor

Buhar makinesi, buharın içinde var olan ısı enerjisini, mekanik enerjiye dönüştüren bir dıştan yanmalı motordur. Buhar makineleri, lokomotifler, buharlı gemiler, pompalar, buharlı traktörler ve endüstriyel devreler olabilir.

<span class="mw-page-title-main">Rankine çevrimi</span>

Rankine çevrimi, termodinamik bir çevrimdir. Diğer termodinamik çevrimler gibi, Rankine çevriminin maksimum verimi de, Carnot çevriminin maksimum verimli hesaplanması ile elde edilir. Rankine çevrimi adını William John Macquorn Rankine'den alır.

<span class="mw-page-title-main">Termodinamik çevrim</span>

Termodinamik çevrim, bir veya daha çok hal değişimi gerçekleştiren, veya enerji üreterek veya enerjiyi transfer ederek ilk haline dönen bir çalışma akışkanı içeren çevrimlerdir. Tabloda termodinamik çevrimlerin listesi verilmiştir.

<span class="mw-page-title-main">Stirling motoru</span>

Stirling motoru, sıcak hava motoru olarak da bilinir. Dıştan yanmalı motorlu bir ısı makinesi tipidir. Isı değişimi prosesi, ısının mekanik harekete dönüşümünün ideal verime yakın olmasına izin verir.

<span class="mw-page-title-main">Ericsson çevrimi</span>

Ericsson çevrimi, ismini John Ericsson’dan almış termodinamik bir çevrimdir. Gerçekte 2 çevrim bulmuş ve ısı makineleri üzerinde uygulamalarını göstermiştir. İlk çevrim Brayton çevrimi olarak bildiğimiz çevrimle hemen hemen aynıdır. İkinci çevrim Carnot çevrimine eşit verim ortaya koyar. Her ikisi de sık sık dıştan yanma kabiliyetleri açısından Stirling motoru ile karşılaştırılır ve ikinci çevrim aynı verimliliktedir.

Adyabatik, termodinamikte çalışma akışkanında ısı ve kütle kaybının veya kazancının olmadığı haldeki süreçtir. Adyabatik, bir ortam oluşturabilmek için sınırlanmış alanın ısı ve kütle geçişine karşı tamamen yalıtılmış olması gereklidir.

<span class="mw-page-title-main">Isı pompası</span> Isıyı bir alandan diğerine aktaran sistem

Gerçekte bir soğutma çevrimi olan ısı pompası çevriminin temel prensibini Nicolas Léonard Sadi Carnot 1824 yılında ortaya atmıştır. 26 yıl sonra 1850 yılında Lord Kelvin'in, soğutma cihazlarının ısıtma maksadı ile kullanılabileceğini ileri sürmesiyle ısı pompası uygulamaya girdi. II. Dünya Savaşı'ndan önce ısı pompasının geliştirilmesi ve kullanılır hâle getirilmesi için birçok mühendis ve bilim insanı bu alanda araştırmalar ve çalışmalar yaptı. Savaş yıllarında endüstri, imkânlarını daha acil problemlere yönelttiği için ara verilen bu çalışmalara savaştan sonra tekrar başlandı.

<span class="mw-page-title-main">Buğu</span> suyun 100 derecede kaynatıldıktan sonraki halidir

Buğu, istim veya islim ; fizik, kimya ve mühendislikte, buharlaşmış suyu ifade eder. 100 santigrat derece civarındaki sıcaklıkta ve standart atmosferik basınçtaki buhar, saftır, saydam gaz haldedir ve sıvı haldeki sudan 1600 kat daha hacimlidir. Buhar doğal olarak suyun kaynama noktasından daha sıcaktır. Daha yüksek sıcaklıklardaki buhara genelde kızdırılmış buhar denir.

<span class="mw-page-title-main">Isıl verim</span>

Isıl verim, içten yanmalı motor, ısı makinası, ısı pompası gibi termodinamik çevrim gerçekleştiren makinelerde boyutsuz bir ısıl başarım ölçüsüdür. Bu makinelerde sisteme ısı verilir ve genellikle mekanik olmak üzere başka tip bir enerji biçimi ya da ısı elde edilmek istenir. Genel anlamda ısıl verim:

Termodinamiğin(Isıldevinimin) ikinci yasası, izole sistemlerin entropisinin asla azalamayacağını belirtir. Bunun sebebini izole sistemlerin termodinamik dengeden spontane olarak oluşmasıyla açıklar. Buna benzer olarak sürekli çalışan makinelerin ikinci kanunu imkânsızdır.

<span class="mw-page-title-main">Termodinamik kanunları</span>

Termodinamik yasaları, termodinamiğin temelini oluşturan dört yasadır. Termodinamik proseslerdeki ısı ve transferlerinin yapısını tanımlar.

Termal enerji, ortam veya sistem sıcaklığı sonucunda ortamdaki veya sistemdeki bir cismin veya maddenin potansiyel ve kinetik enerjileri toplamını ifade eden bir enerji biçimidir. Sistemde sıcaklık olmadığı müddetçe bu niceliği tanımlamak zor ve hatta anlamsız olabilir. Bu durumda herhangi bir termal iş söz konusu değildir.

<span class="mw-page-title-main">Enerji dönüşümü</span> Enerjiyi bir veya iki formdan diğerine dönüştürme süreci

Enerji dönüşümü enerjinin bir biçimden diğerine dönüşümüdür. Fizikte enerji terimi bir sistemdeki belirli değişiklikleri oluşturma kapasitesini açıklar. Dönüşümde entropinin sınırlamaları göz ardı edilir. Sistemlerin toplam enerji dönüşümü, yalnızca enerjinin eklenmesi veya çıkarılması ile sağlanabilir. Termodinamiğin birinci kanununa göre enerji, dönüştürülebilen bir büyüklüktür. Bir sistemin toplam kütle miktarı, enerjisinin bir ölçüsüdür. Bir sistemdeki enerji dönüştürülebildiğinden dolayı, farklı bir hale veya başka bir biçime dönüşebilir. Çoğu haldeki enerji, birçok fiziksel iş yapmak için kullanılabilir. Enerji doğal süreçler veya makinelerde kullanılabilir. Ayrıca ısı, ışık veya harekete dönüşebilir. Örneğin bir güneş pili, güneş ışınımını elektrik enerjisine dönüştürür ve böylece ampul yanar veya bilgisayara güç sağlanır.

<span class="mw-page-title-main">Isı motoru</span>

Termodinamikte, ısı enerjisini mekanik enerjiye çeviren sistemlere Isı Motoru denir. Bu çeviriyi maddeyi çok yüksek sıcaklıklara getirip daha sonra düşük sıcaklıklara getirerek yapar. Isınan madde jeneratörün devinimsel kısmında "iş" yaparak enerjisini jeneratöre aktarır ve soğur. Bu işlem esnasında bir miktar termal enerji "iş"e dönüşür. Dönüşüm miktarı kullanılan maddeye bağlıdır.

<span class="mw-page-title-main">Isıl denge</span>

Isıl denge, kimya biliminde maddelerin son sıcaklıklarının eşit olma durumudur. Isıl denge değeri her daim, bir araya konulan maddelerin ilk sıcaklıkları arasında bir değerdedir. Isıca yalıtılmış bir kaba hem sıcak hem de soğuk su koyulursa, sıcak sudan soğuk suya enerji aktarımı gerçekleşir. Enerji aktarımı her zaman sıcaktan soğuğa doğrudur. Böylece etkileşim sonucunda sıcak madde soğur, soğuk madde ısınır. Bu olay, sıcaklıklar eşitlenene kadar devam eder. Bu durum "Qalınan = Qverilen" şeklinde sembolize edilir.

Carnot bataryaları, elektriği ısıl enerji deposunda depolayan bir tür enerji depolama sistemidir. Şarj işlemi sırasında elektrik ısıya dönüştürülerek ısı deposunda depolanır. Deşarj işlemi sırasında depolanan ısı tekrar elektriğe dönüştürülür.

<span class="mw-page-title-main">Carnot ısı motoru</span>

Carnot ısı motoru, Carnot çevriminde çalışan bir ısı motorudur. Bu ısı motorunun temel hâli 1824'te Nicolas Léonard Sadi Carnot tarafından geliştirildi. Carnot motor modeli, 1834'te Benoît Paul Émile Clapeyron tarafından grafiksel olarak genişletildi ve 1857'de Rudolf Clausius tarafından matematiksel anlamda araştırıldı. Bu çalışmalar, temel bir termodinamik kavram olan entropinin keşfedilmesini sağladı. Carnot motoru, teorik olarak mümkün olan en verimli motordur. Verimlilik, yalnızca motorun arasında çalıştığı sıcak ve soğuk ısı rezervuarlarının mutlak sıcaklıklarına bağlıdır.

1824 yılında Nicolas Léonard Sadi Carnot tarafından geliştirilen Carnot teoremi, aynı zamanda Carnot kuralı olarak da adlandırılır, termodinamik sistemlerde elde edilebilir maksimum verimin sınırlarını belirleyen bir ilkedir.