İçeriğe atla

Carlyle-Thompson hipotezi

Carlyle-Thompson hipotezi 19. yüzyılda ortaya atılmış, lineer cebirin eş düzlemsel geometrideki 4 boyutlu hiperbolik cisimlerin yüzey alanlarıyla ilgili öne sürülmüş bir kuramdır. Buna göre 4 boyutlu uzaydaki pürüzsüz cisimlerin yüzey alanlarının normal gradyanları kullanılarak hesaplanılabileceği öngörülür. Bu hipotezin çelişkileri 1905 yılında Hint matematikçi Srinivasa Ramanujan tarafından ortaya konulmuş ve o günden beri kesin aksini ispatlayan bir çalışma yayınlanmamıştır.[1][2]

Kaynakça

  1. ^ Lax, P. D. (2007). Linear algebra and its applications (Vol. 78). John Wiley & Sons. p. 44
  2. ^ Cheney, W., & Kincaid, D. (2009). Linear algebra: Theory and applications. The Australian Mathematical Society, 110, 544-550. pp. 547-8

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matematik</span> nicelik, yapı, uzay ve değişim gibi konularla ilgilenen bilim dalı

Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.

<span class="mw-page-title-main">Diferansiyel denklem</span>

Matematikte, diferansiyel denklem, bir ya da birden fazla fonksiyonu ve bunların türevlerini ilişkilendiren denklemdir. Fizik, kimya, mühendislik, biyoloji ve ekonomi alanlarında matematiksel modeller genellikle diferansiyel denklemler kullanılarak ifade edilirler. Bu denklemlerde, fonksiyonlar genellikle fiziksel ya da finansal değerlere, fonksiyon türevleriyse değerlerin değişim hızlarına denk gelir.

Uzunluk, bir cisimin boyunu ifade eden büyüklük. Bu büyüklük en, boy veya yükseklik yönlerinde olabilir. Fizikte ise uzunluk, mesafe ile eşdeğer anlamda kullanılır. SI birim sisteminde uzunluk birimi metredir.

<span class="mw-page-title-main">Lineer cebir</span> Uzay matematiği

Doğrusal cebir ya da lineer cebir; matematiğin, vektörler (yöney), vektör uzayları, doğrusal dönüşümler, doğrusal denklem takımları ve matrisleri (dizey) inceleyen alanıdır. Vektör uzayları, modern matematiğin merkezinde yer alan bir konudur. Bundan dolayı doğrusal cebir hem soyut cebirde hem de fonksiyonel analizde sıkça kullanılır. Doğrusal cebir, analitik geometri ile de alakalı olup sosyal bilimlerde ve fen bilimlerinde yaygın bir uygulama alanına sahiptir.

<span class="mw-page-title-main">Poincaré hipotezi</span>

Topolojide Poincaré hipotezi, Fransız matematikçi, fizikçi ve filozof Henri Poincaré'nin 1904 yılında ortaya attığı teoremdir.

<span class="mw-page-title-main">Dördey</span>

Matematikte, dördeyler, karmaşık sayıları bir gerçel, üç sanal boyuta genişleten sayı sistemidir. İlk defa İrlandalı matematikçi Sir William Rowan Hamilton tarafından 1843 yılında tanımlanmış ve 3 boyutlu uzaydaki matematiğe uygulanmışlardır. Kuaterniyonlar değişme özelliğine sahip değildir. Her ne kadar pek çok uygulamada vektörler ve matrisler dördeylerin yerini almışsa da, kuramsal ve uygulamalı matematikte hala kullanılmaktadırlar. Başlıca kullanım alanı, 3 boyutlu uzayda dönme hareketinin hesaplanmasıdır.

<span class="mw-page-title-main">Kurtulma hızı</span> bir cismin kendisini bağlayan kütleçekim alanından kurtulak için varması gereken hız

Fizikte, kurtulma hızı kütleçekim alanındaki herhangi bir cismin kinetik enerjisinin söz konusu alana bağıl potansiyel enerjisine eşit olduğu andaki hızıdır. Genellikle üç boyutlu bir uzayda bulunan cismin kendisini etkileyen kütleçekim alanından kurtulabilmesi için ulaşması gereken sürati ifade eder.

<span class="mw-page-title-main">Sayısal analiz</span>

Sayısal analiz, diğer adıyla nümerik analiz veya sayısal çözümleme, matematiksel analiz problemlerinin yaklaşık çözümlerinde kullanılan algoritmaları inceler. Bu nedenle birçok mühendislik dalı ve doğa bilimlerinde önem arz eden sayısal analiz, bilimsel hesaplama bilimi olarak da kabul edilebilir. Bilgisayarın işlem kapasitesinin artması ile gündelik hayatta ortaya çıkan birçok sistemin matematiksel modellenmesi mümkün olmuş ve sayısal analiz algoritmaları burada ön plana çıkmıştır. 21. yüzyıldan itibaren bilimsel hesaplama yöntemleri mühendislik ve doğa bilimleri ile sınırlı kalmamış ve sosyal bilimler ile işletme gibi alanları da etkilemiştir. Sayısal analizin alt başlıklarına adi diferansiyel denklemlerin yaklaşık çözümleri ve özellikle veri biliminde önem taşıyan sayısal lineer cebir ile optimizasyon örnek gösterilebilir.

<span class="mw-page-title-main">Hüseyin Tevfik Paşa</span>

Vidinli Hüseyin Tevfik Paşa bir Osmanlı generali (Müşir) ve matematikçisi. Lineer cebir üzerine çalışmaları ile bilinir.

Matematiğin vektör uzaylarıyla ve bu uzayların üzerinde tanımlı operatörlerle uğraşan bir alt dalı. Kökleri fonksiyon uzayları kuramının geliştirilmesine; hatta diferansiyel ve integral denklemlerinin çalışılmasına kadar gitmektedir. Özelde mesela Fourier dönüşümü gibi fonksiyon dönüşümlerinin çalışılmasında da kullanılmıştır. Fonksiyonel kelimesinin ilk kullanımı varyasyonlar hesabına kadar takip edilebilir. Ancak, genel anlamda kullanımı İtalyan matematikçi ve fizikçi Vito Volterra'ya atfedilmektedir. Yine de temeli büyük ölçüde Stefan Banach ve çevresindeki Polonyalı matematikçiler tarafından atılmış ve geliştirilmiştir. Çağdaş anlamda, fonksiyonel analiz bir topolojiye sahip vektör uzaylarının çalışılmasında, özellikle sonsuz boyutlu uzaylarda, gözükmektedir. Tanımdan yola çıkılarak fonksiyon analizinin sonlu boyutlu uzaylar kuramını da içerdiği düşünülebilir; ancak bu uzayları bir topolojisi olmadan inceleyen alan doğrusal cebirdir. Fonksiyonel analizin önemli bir işlevlerinden biri de ölçü, integral ve olasılık kuramı gibi genel kuramları sonsuz boyutlu uzaylara yaymaktır ki bu işlevin özelde adı sonsuz boyutlu analizdir.

<span class="mw-page-title-main">Temel cebir</span>

Basit cebir, matematik dersinde öğretilen cebirin en temel kısmıdır. Normalde liselerde öğretilir ve öğrencilerin işlem ve belirli sayılar üzerine kurulu olan aritmetiği anlamalarını sağlar. Cebir, değişken olarak bilinen sabit olmayan değerlerin büyüklüklerini açıklar. Soyut cebir aksine temel cebir, cebirsel yapı ile ilgilenmez, reel sayı ve karmaşık sayılarla ilgilenir.

Etkin sıcaklık genel olarak bir cismin emisyon eğrisi ya da dalga boyu fonksiyonu, bilinmediği zaman, o cismin sıcaklık değerini tahmin etmek amacıyla kullanılır. Yıldız ya da gezegen gibi bir cismin etkin sıcaklığı, bir kara cismin yaydığı toplam radyasyon enerjisinin bu cismin yaydığı enerjiye eşit olduğu zamanki sıcaklık değeridir.

<span class="mw-page-title-main">Sürekli ortamlar mekaniği</span>

Sürekli ortamlar mekaniği, ayrı parçacıklar yerine tam bir kütle olarak modellenen maddelerin mekanik davranışları ve kinematiğin analizi ile ilgilenen mekaniğin bir dalıdır. Fransız matematikçi Augustin-Louis Cauchy, 19. yüzyılda bu modelleri formüle dökmüştür, fakat bu alandaki araştırmalar günümüzde devam etmektedir. 

Matematikte Wronskiyen Józef Hoene-Wroński tarafından sunulan bir determinanttır. Diferansiyel denklemlerde çözüm kümesinin lineer bağımsızlığını göstermek için kullanılır.

Zenodorus çevresi sabit olan bir şeklin alanını ve sabit yüzeyli katı bir cismin hacmini inceleyen eski bir Yunan matematikçi.

<span class="mw-page-title-main">Menteşe teoremi</span> Öklid geometrisinde bir teorem

Geometride, menteşe teoremi, bir üçgenin iki kenarı başka bir üçgenin iki kenarına uyuyorsa ve birincinin iç açısının ikincinin iç açısından daha büyük olduğunda, ilk üçgenin üçüncü kenarının ikinci üçgenin üçüncü kenarından daha uzun olduğunu belirtir. Bu teorem aslında Öklid'in Elemanları Kitabının 24. önermesidir. Teorem şunları belirtir:

<span class="mw-page-title-main">Gnomon teoremi</span> Bir gnomonda meydana gelen belirli paralelkenarlar eşit büyüklükte alanlara sahiptir.

Gnomon teoremi, bir gnomon'da meydana gelen belirli paralelkenarların eşit büyüklükte alanlara sahip olduğunu belirtir. Gnomon, geometride benzer bir paralelkenarı daha büyük bir paralelkenarın bir köşesinden çıkararak oluşturulan bir düzlem şeklidir; veya daha genel olarak, belirli bir şekle eklendiğinde, aynı şekle sahip daha büyük bir şekil oluşturan bir şekildir.

<span class="mw-page-title-main">Doğrusal bağımsızlık</span>

Lineer cebirde, bir vektörkümesinin elemanlarının herhangi biri diğerlerinin doğrusal birleşimi olarak yazılabiliyorsa bu küme doğrusal olarak bağımlı tabir edilir; eğer kümedeki vektörlerin hiçbiri bu şekilde yazılamıyorsa, bu küme için doğrusal olarak bağımsız denir. Doğrusal bağımsızlık kavramı, boyut kavramının tanımlanmasında önemli yere sahiptir.

Matematik'te, doğrusal birleşim ya da lineer kombinasyon, bir kümenin her elemanının birer sabitle çarpılarak sonuca eklendiği ifadedir. Örneğin, x ve y'nin doğrusal birleşimi ax + by'dir. Doğrusal birleşim kavramı doğrusal cebir ve benzeri matematik alanlarında sıkça kullanılır.

Edmund Frederick Robertson, St Andrews Üniversitesi'nde saf matematik profesörüdür.