İçeriğe atla

C değeri muamması

C değeri muamması veya C değeri paradoksu, ökaryotik türlerin çekirdek genomu büyüklüğündeki büyük çeşitliliğe değinmek için kullanılan bir terimdir. C değeri muammasının temelinde yatan gözlem, genom büyüklüğünün organizma kompleksliği ile ilintili olmadığıdır; örneğin, bazı tek hücreli protistalarin genomları insanınkinden çok daha büyüktür.

Tarihçe

1948'de Roger ve Colette Vendrely, "bir hayvan türündeki tüm hücrelerin çekirdek DNA'sındaki kayda değer aynılık" olduğunu rapor ettiler.[1] Bu gözlemlerine dayanarak genlerin protein değil DNA'dan oluşması gerektiğini savundular. C-değeri terimi bu gözlemlenen aynılığa değinmek için, H. Swift tarafından, hücre çekirdeğindeki haploid DNA içeriği için kullanılmıştır.[2] Ancak, kısa süre sonra, türler arasında C değerinin (genom büyüklüğünün) çok farklılık gösterdiği bulundu. Üstelik bu C değerinin (organizmanın kompleksliği ile orantılı olduğu varsayılan) gen sayısı ile ilişkisiz olduğu bulundu. Örneğin bazı semenderlerdeki somatik hücrelerindeki DNA miktarı, insan hücrelerindekinden 40 kere daha çok olabilmektedir. DNA eğer genlerin malzemesi ise ama DNA mitarı gen sayısı ile orantılı değilse bu bir paradoks oluşturuyordu. C değeri paradoksu terimi C.A. Thomas, Jr. tarafından 1971'de kullanıldı.[3]

1970 başlarında kodlamayan DNA'nın keşfi, C-değeri paradoksunun kısmen çözülmesini sağladı. Çoğu ökaryotta (ama prokaryotlarda değil) DNA'nın büyük bir kısmı protein kodlamaz, dolayısıyla hücredeki toplam DNA miktarı ile DNA'dan üretilen proteinlerin çeşitliliği arasında bir bağlantı yoktur. Örneğin insan genomunun %1,5'i protein kodlayıcı genlerden oluşur, geri kalan %98,5 ise çeşitli tipte kodlamayan DNA dizilerinden oluşur.[4] Bu kodlamayan DNA dizilerinin başında ötelenebilir elemanlar (ing. transposable elements) gelir. Aynı kompleksiteye sahip türlerden bazılarının genomlarının diğerlerinden daha fazla miktarda kodlamayan diziler içerdiği halen bilinmemektedir. Genomun sadece ufak bir bölümünün protein kodlayıcı genlerden oluştuğu bilinmekle beraber, paradoks daha çözülmemiştir.

C değeri muamması

"C değeri muamması" (İng. "C-value enigma"), yukarıda belirtilen "C değeri paradoksu" teriminin yenilenmiş bir ifadesidir. Bu terim Kanadalı biyolog T. Ryan Gregory tarafından yaklaşık 2000 yılı civarında türetilmiştir.[5] Genel şekliyle, C değeri muamması farklı ökaryotların genomlarında kodlamayan DNA miktarındaki çeşitlilik için kullanılır.

C değeri muamması, daha eski olan C değeri paradoksundan farklı olarak, birbirinden bağımsız ama eşit derecede önemli olan şu sorulardan oluşur:

  1. Farkli ökaryotik genomlarda hangi kodlamayıcı DNA tipleri bulunur?
  2. Bu kodlamayan DNA'nın kaynağı nedir, zaman içinde genomda nasıl yayılır veya genomdan nasıl kaybolur?
  3. Kromozomlar, hücre çekirdeği, hücreler ve organizmalar için bu kodlamayan DNA'nın etki veya işlevleri nelerdir?
  4. Neden bazı organizmaların genomları başlıca proteın kodlayan DNA dizilerinden oluşur, bazı organizmalar ise muazzam oranda kodlamayan DNA içerirler?

Kaynakça

  1. ^ Vendrely, R. and C. Vendrely (1948). La teneur du noyau cellulaire en acide désoxyribonucléique à travers les organes, les individus et les espèces animales: Techniques et premiers résultats. Experientia 4: 434-436.
  2. ^ Swift H (1950). "The constancy of desoxyribose nucleic acid in plant nuclei". Proc Natl Acad Sci USA. 36 (11). s. 643-654. PMC 1063260 $2. 
  3. ^ Thomas CA Jr (1971). "The genetic organization of chromosomes". Annual Review of Genetics. Cilt 5. s. 237-256. PMID 16097657. 
  4. ^ International Human Genome Sequencing Consortium (2001). "Initial sequencing and analysis of the human genome". Nature. 409 (6822). ss. 860-921. doi:10.1038/35057062. PMID 11237011.  [1] 3 Ağustos 2009 tarihinde Wayback Machine sitesinde arşivlendi.
  5. ^ Gregory TR (2001). "Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma". Biological Reviews. 76 (1). s. 65-101. PMID 11325054. 

Ayrıca bakınız

  • Hayvan genom büyüklükleri veritabanı
  • Karşılaştırmalı genomik
  • C-değeri
  • Genom
  • Genom büyüklüğü
  • İnsan genomu
  • Junk DNA
  • Kodlamayan DNA
  • Bitki DNA C-değeri Veritabanı
  • Bencil DNA
  • Hareketli genetik elemanlar

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Genetik</span> biyolojinin organizmalardaki kalıtım ve çeşitliliği inceleyen bir dalı

Genetik ya da kalıtım bilimi, biyolojinin organizmalardaki kalıtım ve genetik varyasyonu inceleyen bir dalıdır. Türkçeye Almancadan geçen genetik sözcüğü 1831 yılında Yunanca γενετικός - genetikos ("genitif") sözcüğünden türetildi. Bu sözcüğün kökeni ise γένεσις - genesis ("köken") sözcüğüne dayanmaktadır.

<span class="mw-page-title-main">Moleküler biyoloji</span> Canlı yapılarını moleküler düzeyde inceleyen bilim dalı.

Moleküler biyoloji, canlılardaki olayları moleküler seviyede inceleyen biyoloji dalıdır.

<span class="mw-page-title-main">Mesajcı RNA</span> Bir protein üretmek için ribozom tarafından okunan RNA

Mesajcı RNA (mRNA), sentezlenecek bir proteinin amino asit dizisine karşılık gelen kimyasal şifreyi taşıyan bir moleküldür. mRNA, bir DNA kalıptan transkripsiyon yoluyla sentezlenir ve protein sentez yeri olan ribozomlara, protein kodlayıcı bilgiyi taşır. Burada, çevirim (translasyon) süreci sonucu, RNA polimerindeki bilgi ile bir amino asit polimeri üretilir. Nükleik asitlerin amino asit dizilerine karşılık gelen bölgelerindeki her üç baz, proteindeki bir amino asite karşılık gelir. Bu üçlülere kodon denir, her biri bir amino asit kodlar, bitiş kodonu ise protein sentezini durdurur. Bu işlem iki diğer RNA türünü daha gerektirir: taşıyıcı RNA (tRNA) kodonun tanınmasına aracılık eder ve ona karşılık gelen amino asiti getirir; ribozomal RNA (rRNA) ise ribozomdaki protein imalat mekanizmasının kataliz merkezidir.

<span class="mw-page-title-main">Ribozomal RNA</span> Ribozomun RNA bileşeni

Ribozomal RNA (rRNA), ribozomlarda bulunan bir RNA tipidir, ribozomun protein senteziyle ilişkili katalitik fonksiyonundan sorumludur. Ribozomal RNA'nın görevi, mRNA'daki bilginin translasyon süreci sırasında amino asit dizisine çevrilmesi için taşıyıcı RNA (tRNA) ile etkileşmek ve uzayan peptit zincirine amino asit takmaktır. Hücre sitoplazmasında serbest halde bulunan RNA'nın %80'i rRNA'dan oluşur.

<span class="mw-page-title-main">Protein biyosentezi</span>

Protein biyosentezi, hücrenin protein sentezlenmesi için gereken bir biyokimyasal süreçtir. Bu terim bazen sadece protein translasyonu anlamında kullanılsa da transkripsiyon ile başlayıp translasyonla biten çok aşamalı bir süreçtir. Prokaryotlarda ve ökaryotlarda ribozom yapısı ve yardımcı proteinler bakımından farklılık göstermesine karşın, temel mekanizma korunmuştur.

<span class="mw-page-title-main">Virüs</span> canlı ve ya cansız arası mikroskobik enfeksiyon etkeni

Virüs, sadece canlı hücreleri enfekte edebilen ve böylece replike olabilen mikroskobik enfeksiyon etkenleri. Virüsler; hayvanlardan ve bitkilerden, bakterilerin ve arkelerin de içinde bulunduğu mikroorganizmalara kadar her türlü canlı şekillerine bulaşabilirler.

<span class="mw-page-title-main">Transkripsiyon (genetik)</span> bir DNA parçasının RNAya kopyalanması süreci

Transkripsiyon, yazılma veya yazılım, DNA'yı oluşturan nükleotit dizisinin RNA polimeraz enzimi tarafından bir RNA dizisi olarak kopyalanması sürecidir. Başka bir deyişle, DNA'dan RNA'ya genetik bilginin aktarımıdır. Protein kodlayan DNA durumunda, transkripsiyon, DNA'da bulunan genetik bilginin bir protein veya peptit dizisine çevirisinin ilk aşamasıdır. RNA'ya yazılan bir DNA parçasına "transkripsiyon birimi" denir. Transkripsiyonda hata kontrol mekanizmaları vardır, ama bunlar DNA çoğalmasındakinden daha az sayıda ve etkindirler; dolayısıyla transkripsiyon DNA çoğalması kadar aslına sadık değildir.

<span class="mw-page-title-main">Telomer</span>

Telomer, ökaryotik doğrusal kromozomların uçlarında bulunan, herhangi bir gen kodlamayan, özelleşmiş heterokromatin yapılarıdır.

<span class="mw-page-title-main">Transpozon</span>

Transpozonlar bir hücrenin genomunda farklı yerlere, transpozisyon olarak adlandırılan bir süreçle hareket edebilen DNA dizileridir. Bu süreç ile mutasyonlara ve genomdaki DNA miktarının değişmesine neden olurlar. Çeşitli hareketli genetik elemanlar mevcuttur, bunlar transpozisyon mekanizmalarına göre sınıflandırılırlar. Retrotranspozonlar bir RNA ara ürün aracılığıyla kendilerini kopyalayarak hareket ederler. DNA transpozonları bir RNA ara ürün kullanmaz. Tranpozonların kimi kendini kopyalayarak, kimi kendini çevreleyen DNA'dan kesip çıkarıp başka bir yere taşıyarak hareket eder. Bu özelliklerinden dolayı, bilim insanları transpozonları canlılardaki DNA'yı değiştirmek için bir araç olarak kullanırlar.

<span class="mw-page-title-main">Nükleoit</span> Prokaryotik bir hücre içinde genetik materyal içeren bölge

Nükleoit veya nükleoid, prokaryotların genetik materyalinin bulunduğu, düzenli bir biçime sahip olmayan, hücre içi bölgeleridir.

<span class="mw-page-title-main">Mitokondriyal DNA</span>

Mitokondriyal DNA (mtDNA), mitokondri organelinin sitoplazmaya benzer bir sıvı ile dolu olan matriks adı verilen bir kompartımanında bulunan, çift zincirden oluşmuş halkasal yapılı bir nükleik asittir. Her hücrede bir çift Kromozomal DNA bulunurken, mtDNA hücre başına 100-10.000 kopyaya sahip olabilir. Mitokondriyal DNA maternal kalıtım gösterir, bir başka deyişle anneden çocuklara aktarılır.

Moleküler biyolojide anlam, DNA ve RNA gibi nükleik asit moleküllerinde bulunan bilginin yönünün (polaritesinin) başka nükleik asitlerle karşılaştırılmasında kullanılan bir kavramdır. Hangi bağlamda kullanıldığına bağlı olarak "anlam" terimi farklı manalara gelebilir. Bir manasıyla "anlam", bir nükleik asidin protein kodlama özelliğidir. Bir diğer manasıyla "anlam", tek iplikli RNA virüslerinde, viriondan çıkan genomik RNA'nın doğrudan protein kodlayabilme özelliğidir. "Antianlamlı" nükleik asitlerden söz edilince, anlamlı bir mRNA'nın ifadesini engelleyen, komplemanter dizili bir nükleik asit kastedilir.

Genetikte kodlamayan DNA bir proteindeki amino asit dizisine karşılık gelen bilgi içermeyen DNA'dır. Çoğu ökaryotta genomun büyük bir kısmı kodlamayan DNA'dan oluşur. İnsanda genomun %5'i protein kodlayan dizilerden oluşur. Bazı kodlamayan DNA, kodlayan bölgenin etkinliğini düzenlemeye yarar. Yakın zamana kadar kodlamayan DNA'nın ne işe yaradığı bilinmemekteydi ve bu yüzden ona çöp DNA olarak değinilirdi.

<span class="mw-page-title-main">Gen duplikasyonu</span>

Gen duplikasyonu, içinde bir gen bulunan bir DNA bölgesinin herhangi şekilde ikilenmesidir; homolog rekombinasyon sırasında bir hata sonucu, retrotranspozisyon olayı veya tüm bir kromozomun ikilenmesi sonucu meydana gelebilir. Genin kopyası selektif baskıdan yoksun olduğu için, ondaki mutasyonların organizma üzerinde zararlı etkisi olmaz. Dolayısıyla, organizmanın nesilleri boyunca, işlevsel tek kopyalı bir gene kıyasla daha hızlı mutasyona uğrar.

<span class="mw-page-title-main">İnsan genomu</span>

İnsan genomu Homo sapiens'in genomudur. 23 kromozom çifti üzerinde bulunur, bunlardan 22 çifti otozomal kromozomdur, kalan çift ise cinsiyeti belirler. Haploit insan genomu toplam 3 milyar DNA baz çiftinden biraz fazla uzunluktadır. İnsan Genom Projesi ile elde edilen ökromatik insan genom referans dizisi biyomedikal bilimlerde kullanılmaktadır.

Gen bulma, genomik DNA'da biyolojik olarak işlevsel olan dizileri algoritmik olarak tespit etmekle ilgili hesaplamalı biyolojinin bir sahasıdır. İşlevsel dizilerden kastedilen genelde protein kodlayıcı genler olmakla beraber, RNA genleri ve düzenleyici bölgeler de dahil edilir. Bir organizmanın genomu dizilendikten sonra bu genomun anlaşılabilmesi için ilk ve en önemli adım gen bulmadır.

Viral vektör, moleküler biyologlar tarafından hücre içine genetik malzeme ulaştırmak için kullanılan bir araçtır. Bu işlem canlı organizmanın içinde veya hücre kültüründe yapılabilir. Virüsler, enfekte ettikleri hücrelerin içine genomlarını verimli şekilde taşımak için özelleşmiş moleküler mekanizmalar evrimleştirmiştir. Bir virüs tarafından genlerin aktarımı transdüksiyon olarak adlandırılır, bu yolla enfekte olmuş hücrelerin de transdüklenmiş olduğu söylenir. Moleküler biyologlar bu mekanizmayı ilk defa 1970'lerde kontrol altına almayı becermiştir. Paul Berg bakteriyofaj lambda DNA'sı içeren değiştirilmiş bir SV40 virüsü kullanarak kültürlenmiş maymun böbrek hücrelerini enfekte etmiştir.

Bir minisatelit, DNA içinde tekrar eden 10-60 bazlık bir dizidir. Bunlar insan genomunda binden çok konumda bulunur. Bazı minisatelitlerde DNA ipliklerinden biri pürin öbürü pirimidin ağırlıklı olur, bazıları ise “GGGCAGGANG” bazlarından oluşan bir merkez dizi içerirler. Bu dizinin kromozomlar arasında dizi takasına yol açtığı öne sürülmüştür. Başka bir görüşe göre ise, minisatelitlerde kopya sayısı varyasyonunun nedeni, yakınında bir çift iplik DNA kırılma noktasının bulunmasıdır. DNA ikileşmesi sırasındaki sorunlar, örneğin DNA ipliklerinden birinin öbürüne göre kayması sonucu hatalar olmakta ve minisatelitin tekrarlayan dizi sayısında bir değişiklik meydana gelmektedir. En çok değişkenlik gösteren lokus CEB1 (D2S90)'dir.

Deaminasyon bir molekülden bir amino grubunun çıkarılması. Bu reaksiyonu katalizleyen enzimler deaminaz olarak adlandırılır.

<span class="mw-page-title-main">Virüs replikasyonu</span> Enfeksiyon süreci sırasında biyolojik virüslerin oluşumu

Viral replikasyon biyolojik virüslerin konak hücrelerde kopyalanması işlemidir. Viral replikasyon sürecinin başlaması için virüsün konak hücreye girmesi gerekmektedir. Virüs açısından viral replikasyonun amacı, kendini kopya ederek türünün üretimini ve yeni konak hücrelere girerek hayatta kalmasını sağlamaktır. Replikasyon, virüsün genom yapısına ve barındırdığı kor proteinlerine göre önemli farklılıklar gösterebilir. Birçok RNA virüsü sitoplazmada gelişirken, birçok DNA virüsü çekirdeğe bağlanır. "