İçeriğe atla

Brownian ratchet

Schematic figure of a Brownian Ratchet

Termal ve istatistiksel fizik felsefesinde, Brownian ratchet ya da Feynman-Smoluchowski ratchet 1912 tarihinde Polonyalı fizikçi Marian Smoluchowski tarafından analiz edilen ve 11 Mayıs 1962 tarihinde, Kaliforniya teknoloji enstitüsünde, Nobel Ödülü kazanmış Amerikan fizikçi Richard Feynman tarafından bilinir hale getirilen görünür devridaim makinedir. Bu basit makine küçük kısa kürekler ve mandallı çark içerir. Maxwell'in cini olarak görülse de, termal denge sistemindeki gelişigüzel dalgalanmadan işten kazanç sağlayabilmek için kullanılır. Termodinamiğin ikinci yasası ihlali, termal denge sistemindeki gelişigüzel dalgalanmayı kapsar. Detaylar Feynman ve diğerleri tarafından analiz edilmiş ve neden bunu yapamadığını göstermişlerdir.

Makine

Makine mandallı çark olarak da bilinen tek yönde serbestçe dönebilen dişli içerir. Fakat, dönüşü ters yöndeki kilit mandalı tarafından önlenmiştir. Dişli, dingille ilk derecede su moleküllerine batırılabilen mandallı çarka bağlıdır. Bu moleküller ısı tarafından belirlenen kinetik enerjiyle oluşan ısı banyosu içerir. Makine, kısa küreği çevirebilen tek molekül çarpışmasındaki impuls kadar küçük olarak düşünülebilir. Bazı çarpışmalar çubuğu döndürmeye yatkın olmasına rağmen, kilit mandalı kısa küreğin tek yönde dönmesine müsaade eder. Bunun gibi bazı çarpışmaların etkileri mandallı çarkın aynı yönde devamlı olarak dönmesi için yeterlidir. Ratchet'in hareketi başka sistemlerde iş yapmak için kullanılabilir. Örneğin, yer çekimine karşı m ağırlıklı yükü kaldırmak. Isı banyosundan gelen enerji ısı meyiline bakılmaksızın, iş yapmak için gereklidir. Bunun gibi makinelerin başarılı şekilde iş yapabilmesi için, makinelerin, ‘Devir yapan herhangi bir makinenin, su deposundan ısı alması ve bir miktar iş yapması imkânsızdır.’ belirten termodinamiğin ikinci yasasını ihlal etmesi gerekir.

Neden başarısız?

Brownian rachet'in ilk izlenimi Brownian hareketinden iş açısından yarar sağlamak olmasına rağmen, Feynman eğer bütün makine aynı dereceye sahipse, mandallı çarkın devamlı olarak aynı yönde dönemeyeceğini fakat gelişigüzel ileri geri hareket edeceğini ve bu hareketten herhangi bir iş yapamayacağını kanıtlar. Bunun nedeni, kilit mandalı kısa kürekle aynı ısıya sahip olduğundan dolayı Brownian hareketine maruz kalarak, yukarı aşağı zıplayacaktır. Mandallı dişli çark, kilit mandalının üzerinden aşağı doğru serbestçe kayabildiğinden dolayı makine aralıklı olarak başarısız olacaktır. Başka bir neden ise, kilit mandalı dişlinin eğimli yüzeyindeyken, kilit mandalını döndürebilen yay dişlinin eğimli yüzeyinde duran ve mandallı çarkla ters yönde dönmeye meyilli olan kilit mandalına tek yönlü kuvvet uygular. Feynman eğer son dereceye sahip mandallı çark ve kilit mandalı ilk dereceye sahip kısa küreğe eşitse, başarısızlık oranı mandallı çarkın ileriye doğru başarısızlık oranına uzun ve yeterli periyotlardan sonra net hareket olmaması için eşit olmalıdır cümlesini kanıtlar. Bu basit kanıt, dişlinin şekline bağlı net hareketin ortaya çıkmadığı, Magnasco tarafından verilir.

Bunun yanı sıra, son sıcaklık ilk sıcaklıktan küçükse, mandallı çark gerçekten ileriye doğru hareket edecektir ve işten yarar sağlayacaktır. Bu örnekte veya düşüncede, enerji iki termal haznenin derece farkından alınır ve dışarı çıkan atık ısı, kilit mandalı tarafından düşük hazneye doğru boşaltılır. Başka bir deyişle, makine fonksiyonları termodinamiğin ikinci yasasına uyan minyatür bir ısı motorudur. Diğer taraftan, eğer ilk sıcaklık son sıcaklıktan büyükse, makine döndüğü yönün aksi yönünde dönmeye başlayacaktır.

Feynman ratchet modeli aynı konsepte sahip Brownian motors'a neden olmuştur. Isısal gürültü yerine kimyasal potansiyelden ve başka mikroskobik dengede olmayan kaynaklardan yararlı iş alabilen çok küçük makineler, termodinamiğin yasalarına uyar. Diyotlar kısa kürek ve kilit mandalının elektriksel analoglarıdır ve aynı nedenden dolayı diyotlar, aynı devredeki Johnson gürültüsünü damıtarak yararlı enerji üretemezler.

Tarihçe

Dişli mandalı ve kısa kürek ilk kez ikinci yasaya uymayan makine olarak Gabriel Lipmann tarafından 1900 yılında tartışıldı. 1912 yılında, Polonyalı fizikçi Marian Smoluchowski makinenin neden geçersiz olduğu hakkındaki ilk doğru ve etkili açıklamayı yaptı; kilit mandalının termal hareketi mandallı çark dişlisine geriye doğru kaymasına izin verir. Feynman 1962 tarihinde, Maxwell-Boltzman dağıtımını kullanarak makinenin ilk etkili analizini yaptı. Maxwell-Boltzman dağıtımı kısa küreğin ilk derecesi, mandallı çarkın son derecesinden büyük olursa, makine ısı motoru olarak görev yapar. Fakat, kısa küreğin ilk derecesi mandallı çarkın son derecesine eşit olursa, kısa kürekte hiç net hareket olmaz. 1996 tarihinde, Juan Parrondo and Pep Espeñol mandallı çarkı olmayan sadece iki adet kısa küreğe sahip olan makinenin üzerindeki çeşitliliği, dingil kısa küreğe ve dişli mandala hazneler arasında ısı üretmek için bağlı olduğunu göstermek için kullanmıştır. Feynman'ın vardığı sonuç doğru olmasına rağmen, Feynman'ın analizi duruğumsu yaklaşımı gerçekten sapan şekilde kullandığı ve verim oranı hakkında yanlış sonuçlanan formüller içerdiği için çürütüldü. 1998 tarihinde Magnasco ve Stolovitzky bu analizi bütünü mandallı çarklı makine olarak düşünmek geliştirdi ve makinenin güç randımanının Feynman tarafından iddia edilen Carnot verim oranından çok daha küçük olduğunu gösterdi. 2000 yılında Derek Abbott, Bruce R. Davis ve Juan Parrondo tarafından yazılan bir kâğıtta, bu problem tekrar analiz edildi ve Parrondo'nun paradoksuyla bağlantı kurulması için çift mandallı çark içerecek şekilde genişletildi.

1950 yılında Léon Brillouin mandallı çark yerine diyot kullanılan elektriksel benzeşim fikrinden söz etti. Fikir diyotları etkileyen termal akım dalgalanmalarının düzeltilmiş olması ve iş yapabilmesi için kendiliğinden sıfıra eşit olmayan sabit voltajı dengelemesi gerekmektedir. Daha detaylı analizlerde diyotların içindeki termal dalgalanmanın damıtılmış akım dalgalanmasındaki voltajı nötrleyen elektromotor kuvvet ürettiği ortaya çıkarıldı. Bu nedenden dolayı, diyotlar sadece etkilenen akım dalgaları diyottan farklı bir dereceye sahip olduğunda sıfıra eşit olmayan voltaj üretebilirler.

Tanecikli Gaz

Twente Üniversitesi ve Yunanistan'daki Patras Üniversitesi'ndeki araştırmalar Feynman-Smoluchowski motoru; termal denge olmadığı zaman, pseudo-Brownian hareketi tanecikli gaz yoluyla işe çevrilir, sayesinde düzenlendi. Tanecikli gaz, sistemin gaz fazında olmasının verdiği enerjiyle titreyen katı parçacıkların bir araya toplanmasıdır. Düzenlenmiş motor vibro dalgalanan tanecikli gaz içinde serbestçe dönmeye izin veren dört adet çark kanatları içerir. Çünkü, mandallı çarkın dişli ve kilit mandal mekanizması, yukarıda da belirtildiği gibi, dingilin yalnızca tek yönde dönmesine izin verir. Rastgele çarpışmalar ve hava kabarcıkları yel değirmeni kanadının hareket etmesine neden olur. Bu Feynman'ın hipoteziyle çelişir gibi gözükmektedir. Fakat, bu sistem mükemmel termal dengede olmadığından dolayı, enerji sabit olarak hava kabarcıklarının sıvı hareketini sürdürebilmesi için sağlanmaktadır. Makinenin üst tarafındaki etkin titreşim molekül gaz yapısına benzemektedir. İdeal gazlardan ayrı olarak, küçük parçacıklar sabit olarak hareket ederken titreşim kesilirse, titreşimin kesilmesi basitçe hava kabarcıklarının düşmesine neden olacaktır. Bu deneyde, gerekli olan dış denge çevresi böylelikle devamlı hale getirilmiştir. İş aniden bitirilmez, mandallı çark efekti sadece kritik titreşim gücü arkasından başlatılabilir. Çok güçlü titreşimler için, yel değirmeni kanadının kısa küreği gazla ısı yayımı oluşturarak etkileşime girer ve dönme hareketini bu sayede sürdürür.

Kaynakça

https://en.wikipedia.org/wiki/Brownian_ratchet 14 Eylül 2014 tarihinde Wayback Machine sitesinde arşivlendi.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Termodinamik</span> enerji bilimi

Termodinamik; ısı, iş, sıcaklık ve enerji arasındaki ilişki ile ilgilenen bilim dalıdır. Basit bir ifadeyle termodinamik, enerjinin bir yerden başka bir yere ve bir biçimden başka bir biçime transferi ile ilgilenir. Bu süreçteki anahtar kavram, ısının, belirli bir mekanik işe denk gelen bir enerji biçimi olmasıdır.

<span class="mw-page-title-main">Makine</span> herhangi bir enerji türünü başka bir enerjiye dönüştürmek, belli bir güçten yararlanarak bir işi yapmak veya etki oluşturmak için dişliler, yataklar ve miller gibi çeşitli makine elemanlarından oluşan düzenekler bütünü

Makine, bir iş yapmak için kuvvet uygulamak ve hareketi kontrol etmek için güç kullanan fiziksel bir sistemdir. Terim genellikle motor kullanan yapay cihazlara veya moleküler makineler gibi doğal biyolojik makromoleküllere de uygulanır.

<span class="mw-page-title-main">Makine mühendisliği</span> Mühendislik

Makine mühendisliği, mekanik sistemlerin tasarım, analiz, imalat ve bakımı için mühendislik fiziği ve mühendislik matematiği ilkelerini malzeme bilimi ile birleştiren bir mühendislik dalıdır.

<span class="mw-page-title-main">Balistik</span>

Balistik veya atış bilimi, mermi ve füzelerin hareketlerini inceleyen bir bilim dalıdır. Uygulamalı mekaniğin bir kolu olarak düşünülebilir. Balistik üç bölüme ayrılır:

  1. Mermi veya füzenin, silahta veya tesir sahasındaki hareketini inceleyen iç balistik,
  2. Uçuş sırasındaki hareketini araştıran dış balistik,
  3. Hedefteki etkileri inceleyen terminal balistik.
<span class="mw-page-title-main">Jiroskop</span> jiroskop, Türkçe adıyla düzdöner, yönü ölçmek veya elde etmek için kullanılır.

Jiroskop veya Türkçe adıyla düzdöner, dönüş ekseninin kendi kendine herhangi bir yönü kabul etmekte özgür olduğu dönen bir çark veya disktir. Açısal hız ve dengenin korumasına göre dönerken bu eksenin yönü devrilmeden veya dayanağın yönünden etkilenmez. Bundan dolayı jiroskoplar yönü ölçmek veya elde etmek için yararlıdır.

<span class="mw-page-title-main">Buhar makinesi</span> Buharın içinde var olan ısı enerjisini, mekanik enerjiye dönüştüren bir dıştan yanmalı motor

Buhar makinesi, buharın içinde var olan ısı enerjisini, mekanik enerjiye dönüştüren bir dıştan yanmalı motordur. Buhar makineleri, lokomotifler, buharlı gemiler, pompalar, buharlı traktörler ve endüstriyel devreler olabilir.

<span class="mw-page-title-main">Stirling motoru</span>

Stirling motoru, sıcak hava motoru olarak da bilinir. Dıştan yanmalı motorlu bir ısı makinesi tipidir. Isı değişimi prosesi, ısının mekanik harekete dönüşümünün ideal verime yakın olmasına izin verir.

<span class="mw-page-title-main">Entropi</span> termodinamik terim

Entropi, fizikte bir sistemin mekanik işe çevrilemeyecek termal enerjisini temsil eden termodinamik terimidir. Çoğunlukla bir sistemdeki rastgelelik ve düzensizlik (kaos) olarak tanımlanır ve istatistikten teolojiye birçok alanda yararlanılır. Sembolü S'dir.

Kestirimci bakım tam zamanında bakımdır. Kestirimci bakım, makina veya ekipmanlardan bazı fiziksel verilerin alınıp işlenmesinden sonra arızanın ne zaman gerçekleşebileceğini, yüksek bir doğrulukla, yeteri kadar zaman önce bilebilmektedir.

<span class="mw-page-title-main">Devridaim makinesi</span>

Devridaim makinesi, kelimesi kelimesine alındığında kendi kendine sonsuza dek çalışan makineleri tanımlar. Ancak daha geniş tanımı, enerji girişinden daha fazla enerji çıkışı sağlayan sistemleri kapsar. Bu çeşit makineler, fiziğin temel yasalarından biri olan, enerjinin yoktan var edilemeyeceğini ve yok edilemeyeceğini belirten enerjinin korunumunu ihlal ederler. En sık rastlanan devridaim makineleri, sürtünme ve hava direncine rağmen hareketini sürdürebildiği iddia edilen makinelerdir. Enerjinin korunumu kanununa göre bu tarz makineler çalışamaz.

<span class="mw-page-title-main">Buhar türbini</span>

Buhar türbini, basınçlı buhardan termal enerjiyi çıkaran ve bunu dönen bir çıkış milinde mekanik iş yapmak için kullanan makinedir. Modern tezahürü 1884'te Charles Parsons tarafından icat edilmiştir. Modern bir buhar türbininin imalatı, 20. yüzyılda ilk kez kullanılabilir hale gelen teknolojiler kullanılarak yüksek kaliteli çelik alaşımlarını hassas parçalara dönüştürmek için gelişmiş metal işçiliğini içerir. Buhar türbinlerinin dayanıklılığı ve verimliliğindeki sürekli gelişmeler, 21. yüzyılın enerji ekonomisinin merkezinde yer almaya devam etmektedir.

Termodinamiğin(Isıldevinimin) ikinci yasası, izole sistemlerin entropisinin asla azalamayacağını belirtir. Bunun sebebini izole sistemlerin termodinamik dengeden spontane olarak oluşmasıyla açıklar. Buna benzer olarak sürekli çalışan makinelerin ikinci kanunu imkânsızdır.

<span class="mw-page-title-main">Termodinamik kanunları</span>

Termodinamik yasaları, termodinamiğin temelini oluşturan dört yasadır. Termodinamik proseslerdeki ısı ve transferlerinin yapısını tanımlar.

Termal enerji, ortam veya sistem sıcaklığı sonucunda ortamdaki veya sistemdeki bir cismin veya maddenin potansiyel ve kinetik enerjileri toplamını ifade eden bir enerji biçimidir. Sistemde sıcaklık olmadığı müddetçe bu niceliği tanımlamak zor ve hatta anlamsız olabilir. Bu durumda herhangi bir termal iş söz konusu değildir.

<span class="mw-page-title-main">Enerji dönüşümü</span> Enerjiyi bir veya iki formdan diğerine dönüştürme süreci

Enerji dönüşümü enerjinin bir biçimden diğerine dönüşümüdür. Fizikte enerji terimi bir sistemdeki belirli değişiklikleri oluşturma kapasitesini açıklar. Dönüşümde entropinin sınırlamaları göz ardı edilir. Sistemlerin toplam enerji dönüşümü, yalnızca enerjinin eklenmesi veya çıkarılması ile sağlanabilir. Termodinamiğin birinci kanununa göre enerji, dönüştürülebilen bir büyüklüktür. Bir sistemin toplam kütle miktarı, enerjisinin bir ölçüsüdür. Bir sistemdeki enerji dönüştürülebildiğinden dolayı, farklı bir hale veya başka bir biçime dönüşebilir. Çoğu haldeki enerji, birçok fiziksel iş yapmak için kullanılabilir. Enerji doğal süreçler veya makinelerde kullanılabilir. Ayrıca ısı, ışık veya harekete dönüşebilir. Örneğin bir güneş pili, güneş ışınımını elektrik enerjisine dönüştürür ve böylece ampul yanar veya bilgisayara güç sağlanır.

<span class="mw-page-title-main">İç enerji</span>

İç enerji, bir maddenin; taneciklerinin öteleme, dönme, titreşim gibi hareketlerinden kaynaklanan kinetik enerji ile fiziksel ya da kimyasal bağları veya nükleonları bir arada tutan kuvvet gibi etkileşimlerinin enerjilerinin toplamını ifade eden kavram. U harfi ile sembolize edilir.

Gemi makineleri, bir geminin ilerlemesini sağlayan gücü ve ihtiyaç duyulan elektriği, suyu, buharı üreten; kullanılan, ihtiyaç duyulan ya da atık olan her türlü akışkanın dolaşımını, ısı değişimini, arıtılmasını ve bertarafını sağlayan; yüklerin transferini sağlayan; seyir halinde, limanda veya demirleme esnasında geminin güvenli bir biçimde kalmasını sağlayan sistemlerdir.

<span class="mw-page-title-main">Kara cisim ışınımı</span> opak ve fiziksel yansıma gerçekleştirmeyen siyah cisimden yayılan ve sabit tutulan tekdüze ısı

Siyah cisim ışıması içinde elektromanyetik ışıma ya da çevresinde termodinamik dengeyi sağlayan ya da siyah cisim tarafından yayılan ve sabit tutulan tekdüze ısıdır. Işıma çok özel bir spektruma ve sadece cismin sıcaklığına bağlı olan bir yoğunluğa sahiptir. Termal ışıma, birçok sıradan obje tarafından kendiliğinden yayılan bir siyah cisim ışıması sayılabilecek türden bir ışımadır. Tamamen yalıtılmış bir termal denge ortamı siyah cisim ışımasını kapsar ve bir boşluk boyunca kendi duvarını yaratarak yayılır, boşluğun etkisi göz ardı edilebilecek kadar küçüktür. Siyah cisim oda sıcaklığında siyah görünür, yaydığı enerjinin çoğu kızılötesidir ve insan gözü ile fark edilemez. Daha yüksek sıcaklıklarda, siyah cisimlerin özkütleleri artarken renkleri de soluk kırmızıdan kör edecek şekilde parlaklığı olan mavi-beyaza dönüşür. Gezegenler ve yıldızlar kendi sistemleri ve siyah cisimler ile termal dengede olmamalarına rağmen, yaydıkları enerji siyah cisim ışımasına en yakın olaydır. Kara delikler siyah cisim olarak sayılabilirler ve kütlelerine bağlı bir sıcaklıkta siyah cisim ışıması yaptıklarına inanılır . Siyah Cisim terimi, ilk olarak Gustav Kirchhoff tarafından 1860 yılında kullanılmıştır.

<span class="mw-page-title-main">Termodinamik ve istatistiksel fizik kronolojisi</span> Termodinamik ve istatistiksel fizik ile ilgili olayların kronolojisidir.

Termodinamik ve istatistiksel fizik ile ilgili olayların kronolojisidir.

<span class="mw-page-title-main">Atık ısı</span>

Atık ısı işleyen makineler ve enerji kullanan işlemler sonucu zorunlu yan ürün olarak üretilir, örneğin buzdolabı havası ısıtır ve yanmalı motorlar çevreye ısı yayar. Birçok sistemin, yan ürünü olarak ısı çıkarma ihtiyacı, termodinamik kanunlarının temelidir. Atık ısı orijinal enerji kaynağından daha düşük faydaya(termodinamik sözlüğünde düşük ekserji veya yüksek entropi) sahiptir. Her türlü insan aktivitesi, doğal sistemler ve bütün organizmalar atık ısı kaynağıdır. Gereksiz soğuk(ısı pompasında olduğu gibi) çıkışı da atık ısı biçimidir.