Işın izleme, gerçek dünyada ışığın ne şekilde hareket ettiğini göz önünde bulundurarak bir sahnenin görüntüsünü çizen bir grafik oluşturma yöntemidir. Ancak bu yöntemde işlemler gerçek yeryüzündeki yolun tersini izler. Gerçek dünyada ışık ışınları bir ışık kaynağından çıkar ve nesneleri aydınlatırlar. Işık, nesnelerden yansır ya da şeffaf nesnelerin içinden geçer. Yansıyan ışık gözümüze ya da kamera merceğine çarpar. Yansıyan ışık ışınlarının çoğu bir gözlemciye erişmediği için bir sahnedeki ışınları izlemek sonsuza dek sürebilir.
Topoloji, matematiğin ana dallarından biridir. Yunancada yer, yüzey veya uzay anlamına gelen topos ve bilim anlamına gelen logos sözcüklerinden türetilmiştir. Topoloji biliminin kuruluş aşamalarında yani 19. yüzyılın ortalarında, bu sözcük yerine aynı dalı ifade eden Latince analysis situs ür.
Bir üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimidir. Üçgene müselles ve üçbucak da denir.
Kenarortay üçgende bir kenarın orta noktasını karşı köşeye birleştiren doğru parçası. Kenarortayların kesiştiği noktaya o üçgenin ağırlık merkezi denir ve G harfi ile adlandırılır.
Açıortay, geometride bir açıyı iki eşit açı şeklinde bölen yapıdır. Bir açıya teğet tüm çemberler çizilerek merkezleri birleştirilirse, o açının açıortayı elde edilir. Bu nedenle açıortaylardan açının kollarına indirilen dikmeler, o çemberlerden birinin merkezinden teğetlere inilen yarıçap dikmeleri olacağından, dikmeler birbirine eşit olur. Her iki kolda oluşan üçgenler de birbirine eşit olacağından, dikmelerin açıortay kollarını kestiği noktalar ile açının bulunduğu köşeye olan uzaklıklar eşit olur.
İki kenarı birbirine eşit olan çokgenlerdir. İç açıları toplamı 180°'dir.
Eğer çokyüzlünün herhangi iki noktasını birleştiren doğru parçası yine bu yüzlünün içinde kalıyorsa, bu çokyüzlüye konveks (dışbükey) çokyüzlü denir. Konveks çokyüzlülerin yüz, ayrıt ve köşe sayıları arasında Euler Teoremi veya Euler Belirtkeni olarak bilinen bir bağıntı vardır.
Pierre René Jean Baptiste Henri Brocard, Fransız meteorolog ve özellikle geometriyle uğraşmış matematikçi. Brocard'ın kendi adını taşıyan Brocard noktaları, çemberi ile üçgenini ve bunların özelliklerini buluşu, en bilinen başarılarıdır.
Çevrel çember, geometride, bir çokgenin tüm köşelerinden geçen çember. Bu çemberin merkezi çevrel özek olarak isimlendirilir.
Brocard noktaları, geometride bir üçgen içinde yer alan özel noktalardır. Fransız matematikçi Henri Brocard'ın çalışmalarından dolayı bu adı almıştır.
Brocard çemberi, geometride, bir üçgenin çevrel çemberinin merkezi ile simedyanı arasındaki doğru parçasını çap kabul eden çember. Brocard noktaları bu çemberin içinde yer alır. Brocard çemberi, adını Fransız matematikçi Henri Brocard'tan almıştır.
Lemoine noktası, üçgenlerde bir köşeden çizilen kenarortayın açıortaya göre simetriği olan doğru ve diğer iki köşe için bu işlem tekrarlanarak elde edilen üç doğrunun kesişim noktası. Kesişim noktası üçgenin simedyan noktası, Grebe noktası ve kesişimi alınan doğrular simedyan olarak da isimlendirilir. Bu isimlendirmeler, 1873'te noktanın varlığını ispatlayan Fransız matematikçi Émile Lemoine ve 1847'de bir çalışma yapan Ernst Wilhelm Grebe'den gelmektedir. Simon Antoine Jean L'Huilier da 1809 yılında bu noktadan söz etmiştir.
Altın üçgen, eş kenarlarının diğer kenara oranı φ'ye, altın oran, eşit olan ikizkenar üçgen.
Çemberlerde Thales teoremi, alınan A, B ve C noktalarının bir çember üzerinde ve AC doğrusunun bu çemberin çapı olması durumunda, ABC açısının dik açı olacağını belirten geometri teoremi. Thales teoremi çevre açı kurallarının özel bir hâlidir. Adını Thales'ten alan teorem, genellikle ona atfedilir ancak bazı yerlerde Pisagor'la da ilişkilendirilir.
Herhangi bir üçgenin kenarlarının orta noktaları, köşeden geçen yüksekliklerinin karşı kenarı kestikleri nokta ve bu yüksekliklerin ortak kesişim noktası ile çıktıkları köşenin arasında kalan doğru parçasının orta noktası bir çember üzerindedir. Bu çembere dokuz nokta çemberi denir.
Projektif geometride, Desargues teoremi, adını Girard Desargues'den alır, şunu belirtir:
- İki üçgen, ancak ve ancak merkezi olarak perspektif içindeyse eksenel olarak perspektif içindedir.
Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.
Hiperbol bir konik kesiti türü. Diğer üç konik kesit türü gibi - parabol, elips ve çember - bir koni ve bir düzlemin kesişimi ile oluşan bir eğridir.
Karl Friedrich Andreas Jacobi, aynı zamanda Carl Friedrich Andreas Jacobi olarak da bilinir, Alman matematikçi ve öğretmendi.