İçeriğe atla

Brocard üçgeni

ABC üçgeninin Brocard üçgeni (siyah). B1 ve B2 iki Brocard noktasını göstermektedir.

Brocard üçgeni, geometride bir üçgenin bir köşesinden, o köşeye ait Brocard noktasına çizilen doğru ile başka bir köşeden, kendisine ait Brocard noktasına çizilen doğrunun kesişim noktası ve benzer şekilde farklı köşe-Brocard noktası kombinasyonları kullanılarak elde edilen diğer iki kesişim noktasını köşe kabul eden üçgen. Oluşan bu üçgen aynı zamanda birinci Brocard üçgeni olarak anılır; çünkü elde edilen Brocard üçgeninin de Brocard üçgeni oluşturularak süreç devam ettirilebilir. Brocard üçgeni, Brocard çemberinin içinde konumlanır.[1] Kavram adını, Fransız matematikçi Henri Brocard'tan alır.[2]

Ayrıca bakınız

Kaynakça

  1. ^ Eric W. Weisstein, First Brocard Triangle (MathWorld) (İngilizce)
  2. ^ Brocard biyografisi 16 Eylül 2018 tarihinde Wayback Machine sitesinde arşivlendi. (İngilizce)

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Işın izleme</span>

Işın izleme, gerçek dünyada ışığın ne şekilde hareket ettiğini göz önünde bulundurarak bir sahnenin görüntüsünü çizen bir grafik oluşturma yöntemidir. Ancak bu yöntemde işlemler gerçek yeryüzündeki yolun tersini izler. Gerçek dünyada ışık ışınları bir ışık kaynağından çıkar ve nesneleri aydınlatırlar. Işık, nesnelerden yansır ya da şeffaf nesnelerin içinden geçer. Yansıyan ışık gözümüze ya da kamera merceğine çarpar. Yansıyan ışık ışınlarının çoğu bir gözlemciye erişmediği için bir sahnedeki ışınları izlemek sonsuza dek sürebilir.

<span class="mw-page-title-main">Topoloji</span>

Topoloji, matematiğin ana dallarından biridir. Yunancada yer, yüzey veya uzay anlamına gelen topos ve bilim anlamına gelen logos sözcüklerinden türetilmiştir. Topoloji biliminin kuruluş aşamalarında yani 19. yüzyılın ortalarında, bu sözcük yerine aynı dalı ifade eden Latince analysis situs ür.

<span class="mw-page-title-main">Üçgen</span> üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimi

Bir üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimidir. Üçgene müselles ve üçbucak da denir.

<span class="mw-page-title-main">Kenarortay</span>

Kenarortay üçgende bir kenarın orta noktasını karşı köşeye birleştiren doğru parçası. Kenarortayların kesiştiği noktaya o üçgenin ağırlık merkezi denir ve G harfi ile adlandırılır.

<span class="mw-page-title-main">Açıortay</span>

Açıortay, geometride bir açıyı iki eşit açı şeklinde bölen yapıdır. Bir açıya teğet tüm çemberler çizilerek merkezleri birleştirilirse, o açının açıortayı elde edilir. Bu nedenle açıortaylardan açının kollarına indirilen dikmeler, o çemberlerden birinin merkezinden teğetlere inilen yarıçap dikmeleri olacağından, dikmeler birbirine eşit olur. Her iki kolda oluşan üçgenler de birbirine eşit olacağından, dikmelerin açıortay kollarını kestiği noktalar ile açının bulunduğu köşeye olan uzaklıklar eşit olur.

<span class="mw-page-title-main">Eşkenar üçgen</span> Üç eş kenara sahip üçgen

Eşkenar üçgen, kenar uzunlukları birbirine eşit olan üçgendir. İç açıları da birbirine eşit ve her biri 60 derecedir.

<span class="mw-page-title-main">İkizkenar üçgen</span>

İki kenarı birbirine eşit olan çokgenlerdir. İç açıları toplamı 180°'dir.

<span class="mw-page-title-main">Euler teoremi</span>

Eğer çokyüzlünün herhangi iki noktasını birleştiren doğru parçası yine bu yüzlünün içinde kalıyorsa, bu çokyüzlüye konveks (dışbükey) çokyüzlü denir. Konveks çokyüzlülerin yüz, ayrıt ve köşe sayıları arasında Euler Teoremi veya Euler Belirtkeni olarak bilinen bir bağıntı vardır.

<span class="mw-page-title-main">Henri Brocard</span> Fransız meteorolog ve matematikçi (1845–1922)

Pierre René Jean Baptiste Henri Brocard, Fransız meteorolog ve özellikle geometriyle uğraşmış matematikçi. Brocard'ın kendi adını taşıyan Brocard noktaları, çemberi ile üçgenini ve bunların özelliklerini buluşu, en bilinen başarılarıdır.

<span class="mw-page-title-main">Çevrel çember</span>

Çevrel çember, geometride, bir çokgenin tüm köşelerinden geçen çember. Bu çemberin merkezi çevrel özek olarak isimlendirilir.

<span class="mw-page-title-main">Brocard noktaları</span>

Brocard noktaları, geometride bir üçgen içinde yer alan özel noktalardır. Fransız matematikçi Henri Brocard'ın çalışmalarından dolayı bu adı almıştır.

<span class="mw-page-title-main">Brocard çemberi</span>

Brocard çemberi, geometride, bir üçgenin çevrel çemberinin merkezi ile simedyanı arasındaki doğru parçasını çap kabul eden çember. Brocard noktaları bu çemberin içinde yer alır. Brocard çemberi, adını Fransız matematikçi Henri Brocard'tan almıştır.

<span class="mw-page-title-main">Lemoine noktası</span>

Lemoine noktası, üçgenlerde bir köşeden çizilen kenarortayın açıortaya göre simetriği olan doğru ve diğer iki köşe için bu işlem tekrarlanarak elde edilen üç doğrunun kesişim noktası. Kesişim noktası üçgenin simedyan noktası, Grebe noktası ve kesişimi alınan doğrular simedyan olarak da isimlendirilir. Bu isimlendirmeler, 1873'te noktanın varlığını ispatlayan Fransız matematikçi Émile Lemoine ve 1847'de bir çalışma yapan Ernst Wilhelm Grebe'den gelmektedir. Simon Antoine Jean L'Huilier da 1809 yılında bu noktadan söz etmiştir.

<span class="mw-page-title-main">Altın üçgen</span>

Altın üçgen, eş kenarlarının diğer kenara oranı φ'ye, altın oran, eşit olan ikizkenar üçgen.

<span class="mw-page-title-main">Thales teoremi (çember)</span>

Çemberlerde Thales teoremi, alınan A, B ve C noktalarının bir çember üzerinde ve AC doğrusunun bu çemberin çapı olması durumunda, ABC açısının dik açı olacağını belirten geometri teoremi. Thales teoremi çevre açı kurallarının özel bir hâlidir. Adını Thales'ten alan teorem, genellikle ona atfedilir ancak bazı yerlerde Pisagor'la da ilişkilendirilir.

<span class="mw-page-title-main">Dokuz nokta çemberi</span>

Herhangi bir üçgenin kenarlarının orta noktaları, köşeden geçen yüksekliklerinin karşı kenarı kestikleri nokta ve bu yüksekliklerin ortak kesişim noktası ile çıktıkları köşenin arasında kalan doğru parçasının orta noktası bir çember üzerindedir. Bu çembere dokuz nokta çemberi denir.

<span class="mw-page-title-main">Desargues teoremi</span>

Projektif geometride, Desargues teoremi, adını Girard Desargues'den alır, şunu belirtir:

İki üçgen, ancak ve ancak merkezi olarak perspektif içindeyse eksenel olarak perspektif içindedir.
<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

Hiperbol bir konik kesiti türü. Diğer üç konik kesit türü gibi - parabol, elips ve çember - bir koni ve bir düzlemin kesişimi ile oluşan bir eğridir.

Karl Friedrich Andreas Jacobi, aynı zamanda Carl Friedrich Andreas Jacobi olarak da bilinir, Alman matematikçi ve öğretmendi.