Trigonometri, üçgenlerin açıları ile kenarları arasındaki bağıntıları konu edinen matematik dalı. Trigonometri, sinüs ve kosinüs gibi trigonometrik işlevlerin (fonksiyon) üzerine kurulmuştur ve günümüzde fizik ve mühendislik alanlarında sıkça kullanılmaktadır.
Altın oran, matematikte iki miktardan büyük olanın küçüğe oranı, miktarların toplamının miktarları büyük olanına oranı ile aynı ise altın orandır. Altın oran aynı zamanda antik çağdan bu yana sanat ve mimaride en iyi uyum ve oranları veren düzen bağıntısı olarak kabul edilmekteydi.
Sinüs teoremi, bir çembersel üçgende bir kenar ve bu kenar karşısındaki açının sinüsleri oranı sabittir. Sinüs, dik açılı üçgenlerde dik olmayan bir açının karşısında kalan dik kenar ile hipotenüsün birbirine oranıdır.
Alan veya yüz ölçümü, bir yüzeyin uzayda kapladığı iki boyutlu yer miktarını ölçen bir büyüklüktür. SI birim sisteminde temel alan birimi metrekaredir (m²). Diğer alan birimleri bundan türetilebilir:
- Ar = 100 metrekare (m²)
- Dekar = 1000 metrekareye (m²)
- Hektar = 10.000 metrekare (m²)
- Kilometrekare = 1.000.000 metrekare (m²)
Açıortay, geometride bir açıyı iki eşit açı şeklinde bölen yapıdır. Bir açıya teğet tüm çemberler çizilerek merkezleri birleştirilirse, o açının açıortayı elde edilir. Bu nedenle açıortaylardan açının kollarına indirilen dikmeler, o çemberlerden birinin merkezinden teğetlere inilen yarıçap dikmeleri olacağından, dikmeler birbirine eşit olur. Her iki kolda oluşan üçgenler de birbirine eşit olacağından, dikmelerin açıortay kollarını kestiği noktalar ile açının bulunduğu köşeye olan uzaklıklar eşit olur.
Pierre René Jean Baptiste Henri Brocard, Fransız meteorolog ve özellikle geometriyle uğraşmış matematikçi. Brocard'ın kendi adını taşıyan Brocard noktaları, çemberi ile üçgenini ve bunların özelliklerini buluşu, en bilinen başarılarıdır.
Çevrel çember, geometride, bir çokgenin tüm köşelerinden geçen çember. Bu çemberin merkezi çevrel özek olarak isimlendirilir.
Brocard noktaları, geometride bir üçgen içinde yer alan özel noktalardır. Fransız matematikçi Henri Brocard'ın çalışmalarından dolayı bu adı almıştır.
Brocard üçgeni, geometride bir üçgenin bir köşesinden, o köşeye ait Brocard noktasına çizilen doğru ile başka bir köşeden, kendisine ait Brocard noktasına çizilen doğrunun kesişim noktası ve benzer şekilde farklı köşe-Brocard noktası kombinasyonları kullanılarak elde edilen diğer iki kesişim noktasını köşe kabul eden üçgen. Oluşan bu üçgen aynı zamanda birinci Brocard üçgeni olarak anılır; çünkü elde edilen Brocard üçgeninin de Brocard üçgeni oluşturularak süreç devam ettirilebilir. Brocard üçgeni, Brocard çemberinin içinde konumlanır. Kavram adını, Fransız matematikçi Henri Brocard'tan alır.
Çemberlerde Thales teoremi, alınan A, B ve C noktalarının bir çember üzerinde ve AC doğrusunun bu çemberin çapı olması durumunda, ABC açısının dik açı olacağını belirten geometri teoremi. Thales teoremi çevre açı kurallarının özel bir hâlidir. Adını Thales'ten alan teorem, genellikle ona atfedilir ancak bazı yerlerde Pisagor'la da ilişkilendirilir.
Birim çember Matematikte, yarıçapı bir birim olan çembere birim çember denir. Çoğunlukla, özellikle trigonometride, Öklid düzlemine göre Kartezyen koordinat sisteminde, merkezi orijin üzerinde (0,0) olan ve yarıçapı bir birim olan çemberdir. n birim çember sıklıkla S1; olarak ifade edilir. Genellikle daha büyük boyutları ise birim küredir. (x,y) birim çember üzerinde bir nokta olduğunda, |x| ve |y|, dik olan ve hipotenüsü bir olan üçgenin diğer kenar uzunluklarıdır. Bu nedenle, Pisagor teoremine göre, x ve y bu denklemi karşılamaktadır.
Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.
Yeşil Burun arması, Afrika ülkesi Yeşil Burun Adaları tarafından resmî olarak kullanılan devlet armasıdır.
Geometride adını Sakız Adalı Hipokrat'tan sonra alan Hipokrat ayı, iki çemberden oluşan yaylarla sınırlanmış bir aydır, daha küçük olanın çapı, daha büyük çember üzerinde dik bir açıyı kapsayan bir kirişe sahiptir.
Trigonometri, üçgenlerdeki kenarlar ve açılar arasındaki ilişkileri inceleyen bir matematik dalıdır. Trigonometri, bu ilişkileri tanımlayan ve dalgalar gibi döngüsel fenomenlere uygulanabilirliği olan trigonometrik fonksiyonları tanımlar.
Üçgen geometrisinde, üçgenin iç çemberi ve dokuz nokta çemberi, üçgenin Feuerbach noktasında birbirine içten teğettir. Feuerbach noktası bir üçgen merkezidir, yani tanımı üçgenin yerleşimine ve ölçeğine bağlı değildir. Clark Kimberling'in Üçgen Merkezleri Ansiklopedisi'nde X(11) olarak listelenmiştir ve adını Alman geometrici Karl Wilhelm Feuerbach'tan almıştır.
Dik üçgen yükseklik teoremi veya geometrik ortalama teoremi, bir dik üçgendeki hipotenüs üzerindeki yükseklik uzunluğu ile hipotenüs üzerinde oluşturduğu iki doğru parçası arasındaki ilişkiyi tanımlayan temel geometrinin bir sonucudur. İki doğru parçasının geometrik ortalamasının yüksekliğe eşit olduğunu belirtir.
Geometride, bir üçgen merkezi veya üçgenin merkezi, üçgenin düzleminde bir anlamda üçgenin ortasında bulunan bir noktadır. Örneğin, ağırlık merkezi, çevre merkezi, iç merkez ve diklik merkezi eski Yunanlılara aşinaydı ve basit yapılarla elde edilebilir.
Bu üçgen konuları listesi, geometriciler tarafından incelenen idealleştirmelerde veya Pascal üçgeni veya üçgen matrisler gibi üçgensel dizilerde olduğu gibi soyut olarak veya fiziksel uzayda somut olarak geometrik şekille ilgili şeyleri içerir. Kelimenin geometrik şekle atıfta bulunmadığı aşk üçgeni gibi metaforları içermez.