İçeriğe atla

Brianchon teoremi

Brianchon teoremi

Geometride Brianchon teoremi, bir konik kesit etrafındaki bir altıgen ile sınırlandırıldığında, ana köşegenlerinin (karşıt köşeleri birleştirenler) tek bir noktada kesiştiğini belirten bir teoremdir. Adını Fransız matematikçi Charles Julien Brianchon'dan (1783–1864) almıştır.

Biçimsel açıklama

, bir konik kesitin altı teğet çizgisinden oluşan bir altıgen olsun. Ardından çizgileri (her biri zıt köşeleri birbirine bağlayan uzatılmış köşegenler), Brianchon noktası olan tek bir noktasında kesişir.:p. 218[1]

Pascal teoremi ile bağlantı

Bu teoremin kutupsal karşılıklı ve izdüşümsel çifti, Pascal teoremini verir.

Dejenerasyonlar

Brianchon teoreminin 3 teğet dejenerasyonu

Pascal teoremine gelince, Brianchon teoremi için de dejenerasyonlar vardır: İki komşu teğeti çakıştıralım. Kesişme noktaları bir konik noktası haline gelir. Şekilde üç çift komşu teğet çakışmaktadır. Bu prosedür, üçgenlerin iç elipsleri hakkında bir açıklama ile sonuçlanır. İzdüşümsel bir bakış açısından iki üçgen ve , merkezi ile perspektif olarak uzanmaktadır. Bu, birini diğer üçgene eşleyen merkezi bir doğrudaşlama (kolineasyon) olduğu anlamına gelir. Ancak sadece özel durumlarda bu doğrudaşlama afin bir ölçeklendirmedir. Örneğin, Brianchon noktasının ağırlık merkezi olduğu bir Steiner iç elipsi için.

Afin düzleminde

Brianchon teoremi hem afin düzleminde hem de gerçek izdüşümsel düzlemde doğrudur. Bununla birlikte, afin düzlemindeki ifadesi bir bakıma izdüşümsel düzlemdekinden daha az bilgilendirici ve daha karmaşıktır. Örneğin, bir parabole beş teğet doğru düşünün. Bunlar, altıncı tarafı sonsuzdaki çizgi olan bir altıgenin kenarları olarak düşünülebilir, ancak afin düzleminde sonsuzda bir çizgi yoktur. İki durumda, (var olmayan) bir tepe noktasından karşı tepe noktasına doğru bir çizgi, beş teğet çizgiden birine paralel bir çizgi olacaktır. Brianchon'un teoremi yalnızca afin düzlemi için ifade edildiğinden, böyle bir durumda farklı şekilde ifade edilmesi gerekirdi.

Brianchon teoreminin izdüşümsel çifti, afin düzleminde istisnalara sahiptir, ancak izdüşümsel düzlemde değildir.

İspat

Brianchon'un teoremi, radikal eksen veya karşılıklılık fikriyle kanıtlanabilir.

Konuyla ilgili yayınlar

  • John B. Mertie (1948). "Application Of Brianchon's Theorem to Construction of Geologic Profiles". GSA Bulletin. ss. 767-786. doi:10.1130/0016-7606(1948)59[767:AOBTTC]2.0.CO;2. 22 Mart 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 12 Ekim 2020. 
  • James, G. (1930), "Generalizations of Pascal's and Brianchon's Theorems", The American Mathematical Monthly, 37 (2), ss. 78-80 
  • Ogura, K. (1913), "Some theorems in the geometry of oriented circles in a plane", Tohoku Mathematical Journal, First Series, cilt 3, ss. 104-109 
  • Smart, R. (1942), "1626. Brianchon's Theorem", The Mathematical Gazette, 26 (271), s. 190 
  • Brown, A. (2003), "87.81 A connection between Brianchon's theorem and the seven circles theorem", The Mathematical Gazette, 87 (510), ss. 569-572 
  • Langley, E. M. (1912), "379. Pascal's Theorem; Brianchon's Theorem; Cross-Centre and Cross-Axis", The Mathematical Gazette, 6 (100), ss. 375-378 
  • Smart, R. (1942), "1600. Analytical Proof of Brianchon's Theorem", The Mathematical Gazette, 26 (270), s. 137 
  • Ota, T. (1921), "Pascal-Brianchon Theorems for Higher Curves and Surfaces", Tohoku Mathematical Journal, First Series, 19, ss. 69-88 
  • Odani, K., & Takase, S. (1999), "83.51 On a theorem of Brianchon and Poncelet", The Mathematical Gazette, 83 (498), ss. 483-486 
  • Russell, J. W. (1893), "Chapter XV: Pascal's theorem and Brianchon's theorem", In An elementary treatise on pure geometry with numerous examples, Cornell University Library, ss. 156-162 
  • Fenwick, S. (1843), "XXV. Investigation of Brianchon's theorem", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 22 (144), ss. 167-168 
  • Tan, K., & Thébault, V. (1962), "Some proofs of a theorem on quadrilateral", Mathematics Magazine, 35 (5), ss. 289-294 
  • Robert Bix, (2006), Conics and Cubics: A Concrete Introduction to Algebraic Curves, Springer-Verlag New York, s. 117, doi:10.1007/0-387-39273-4, ISBN 978-0-387-39273-8 

Dış bağlantılar

Ayrıca bakınız

Kaynakça

  1. ^ Projective Geometry. 2. Springer-Verlag. 1987. Theorem 9.15, s. 83. ISBN 0-387-96532-7. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Ceva teoremi</span> Öklid düzlem geometrisinde bir üçgenin kenar doğru parçası çiftlerinin çarpımlarının oranının bire eşit olduğunu belirten teorem

Ceva Teoremi, herhangi bir ABC üçgeni verildiğinde, A, B ve C'den üçgenin zıt kenarlarına doğru olan doğru parçalarının üçgenin her iki kenarında oluşan doğru parçası çiftlerinin oranlarının çarpımı 1'e eşit olduğunda tek noktada kesiştiğini belirtir. Teorem adını İtalyan matematikçi Giovanni Ceva'dan alır.

<span class="mw-page-title-main">Desargues teoremi</span>

Projektif geometride, Desargues teoremi, adını Girard Desargues'den alır, şunu belirtir:

İki üçgen, ancak ve ancak merkezi olarak perspektif içindeyse eksenel olarak perspektif içindedir.
<span class="mw-page-title-main">Apollonius teoremi</span> Öklid geometrisinde bir teorem

Geometri'de, Apollonius teoremi, üçgenin bir kenarortay uzunluğunu kenarlarının uzunluklarıyla ilişkilendiren bir teoremdir.

<span class="mw-page-title-main">Brahmagupta teoremi</span>

Geometride, Brahmagupta teoremi, eğer bir kirişler dörtgeni ortodiyagonal ise, o zaman köşegenlerin kesişme noktasından bir kenara çizilen dikmenin karşı kenarı daima ikiye böldüğünü belirtir. Adını Hint matematikçi Brahmagupta'dan (598-668) almıştır.

<span class="mw-page-title-main">Blaschke–Lebesgue teoremi</span>

Düzlem geometride Blaschke–Lebesgue teoremi, Reuleaux üçgeninin verilen sabit genişlikte tüm eğrilerin en küçük alanına sahip olduğunu belirtir. Belirli bir genişliğe sahip her eğrinin en az Reuleaux üçgeni kadar geniş bir alana sahip olması, Blaschke-Lebesgue eşitsizliği olarak da bilinir. Adını, 20. yüzyılın başlarında teoremi ayrı ayrı yayımlayan Wilhelm Blaschke ve Henri Lebesgue'den almıştır.

<span class="mw-page-title-main">Braikenridge–Maclaurin teoremi</span>

Geometride, 18. yüzyıl İngiliz matematikçileri William Braikenridge ve Colin Maclaurin'in adını taşıyan Braikenridge–Maclaurin teoremi, Pascal teoreminin tersidir. Braikenridge–Maclaurin teoremine göre bir altıgenin üç karşıt kenarı üç eşdoğrusal noktada buluşursa, altı köşe bir konik üzerinde yer alır ve bu da bir çift doğruya dejenere edilebilir.

<span class="mw-page-title-main">İngiliz bayrağı teoremi</span>

Öklid geometrisinde, İngiliz bayrağı teoremi, dikdörtgeni içinde bir noktası seçilirse, 'den dikdörtgenin iki karşıt köşesine olan Öklid mesafelerinin karelerinin toplamının, diğer iki karşıt köşenin toplamına eşit olduğunu söyler. Denklem olarak aşağıdaki şekilde gösterilir:

<span class="mw-page-title-main">Kelebek teoremi</span> Bir çemberin başka iki kirişinin üzerinden çizilen kirişin orta noktası hakkındaki teorem

Kelebek teoremi, Öklid geometrisinin klasik bir sonucudur ve aşağıdaki gibi ifade edilebilir:

<span class="mw-page-title-main">Bézout teoremi</span> aciklama

Bézout teoremi, cebirsel geometride n değişkenli n polinomun ortak sıfırlarının sayısı ile ilgili bir ifadedir. Orijinal biçiminde teorem, genel olarak ortak sıfırların sayısının, polinomların derecelerinin çarpımına eşit olduğunu belirtir. Adını Fransız matematikçi Étienne Bézout'dan almıştır.

Matematikte, genelleştirilmiş Batlamyus teoremi olarak da bilinen Casey teoremi, adını İrlandalı matematikçi John Casey'den alan Öklid geometrisindeki bir teoremdir.

Geometride Descartes teoremi, her dört öpüşen veya karşılıklı teğet çember için, çemberlerin yarıçaplarının belirli bir ikinci dereceden denklemi sağladığını belirtir. Bu denklemi çözerek, verilen üç karşılıklı teğet çembere teğet olan dördüncü bir çember oluşturulabilir. Teorem adını, 1643'te teoremi tanımlayan René Descartes'tan almıştır.

<span class="mw-page-title-main">Droz-Farny doğru teoremi</span> Rastgele bir üçgenin ortasından geçen iki dik doğrunun özelliği hakkında teorem

Öklid geometrisinde, Droz-Farny doğru teoremi, keyfi bir üçgenin yükseklik merkezinden (ortosantr) geçen iki dik doğrunun bir özelliğidir.

<span class="mw-page-title-main">Batlamyus eşitsizliği</span>

Öklid geometrisinde, Batlamyus eşitsizliği, düzlemde veya daha yüksek boyutlu bir uzayda dört nokta tarafından oluşturulan altı uzunluğu ilişkilendirir. Herhangi bir A, B, C ve D noktası için aşağıdaki eşitsizliğin geçerli olduğunu belirtir:

.

Geometride demet teoremi; en basit durumda, gerçek Öklid düzlemindeki altı çember ve sekiz nokta üzerine bir ifadedir. Genel olarak, sadece oval Möbius düzlemleri tarafından meydana getirilen bir Möbius düzleminin bir özelliğidir. Demet teoremi Miquel teoremi ile karıştırılmamalıdır.

<span class="mw-page-title-main">Carnot teoremi (konikler)</span>

Adını Fransız matematikçi Lazare Carnot'dan alan Carnot'un teoremi, konik kesitler ve üçgenler arasındaki bir ilişkiyi tanımlar.

<span class="mw-page-title-main">Euler teoremi (geometri)</span>

Geometride, Euler teoremi, üçgenin çevrel çemberinin merkezi ve iç teğet çemberinin merkezi arasındaki uzunluğunun aşağıdaki şekilde ifade edildiğini belirtir:

<span class="mw-page-title-main">Feuerbach noktası</span>

Üçgen geometrisinde, üçgenin iç çemberi ve dokuz nokta çemberi, üçgenin Feuerbach noktasında birbirine içten teğettir. Feuerbach noktası bir üçgen merkezidir, yani tanımı üçgenin yerleşimine ve ölçeğine bağlı değildir. Clark Kimberling'in Üçgen Merkezleri Ansiklopedisi'nde X(11) olarak listelenmiştir ve adını Alman geometrici Karl Wilhelm Feuerbach'tan almıştır.

<span class="mw-page-title-main">Yedi çember teoremi</span> Öklid geometrisinde, yedinci bir daireye ve her biri 2 komşusuna teğet olan altı daireden oluşan bir zincir hakkındaki teorem

Yedi çember teoremi, Öklid düzlemindeki yedi adet çemberin belirli bir düzenlemesi hakkında bir geometri teoremidir. Bu teoreme göre, her biri iki komşusuna ve yedinci bir dış çembere teğet olan altı çemberden oluşan bir zincir verildiğinde, yedinci çember üzerindeki teğet noktalarının karşıt çiftlerini birleştiren üç doğru aynı noktadan geçer. Teorem, yalnızca temel geometrik ilkeler kullanılarak ifade edilip ispatlanabiliyor olsa da 1974'e kadar keşfedilememiştir.

<span class="mw-page-title-main">Pompeiu teoremi</span>

Pompeiu teoremi, Romanyalı matematikçi Dimitrie Pompeiu tarafından keşfedilen bir düzlem geometrisi sonucudur. Teorem basittir, ancak klasik değildir. Aşağıdakileri ifade eder:

Bir eşkenar üçgen verildiğinde Düzlemde ABC ve ABC üçgeninin düzleminde bir P noktası, PA, PB ve PC uzunlukları bir üçgenin kenarlarını oluşturur.
<span class="mw-page-title-main">Reuschle teoremi</span> Ortak bir noktada kesişen bir üçgenin cevianlarının bir özelliğini tanımlar

Temel geometride, Reuschle teoremi, ortak bir noktada kesişen bir üçgenin cevianlarının bir özelliğini tanımlar ve adını Alman matematikçi Karl Gustav Reuschle (1812-1875)'den alır. Ayrıca Fransız matematikçi Olry Terquem (1782-1862)'in adıyla 1842'de yayınlayan Terquem teoremi olarak da bilinir. Teorem, Euler doğrusu ve Feuerbach'ın dokuz nokta çemberi ile bağlantılı olarak benzer biçimde bulunan belirli köşe çaprazlarının kesişim özellikleriyle ilgili bir problemi ele almaktadır. Reuschle teoreminin ispatı, sekant teoreminin yanı sıra Ceva teoremi ve onun karşıt teoremine dayanmaktadır.