İçeriğe atla

Bremermann'ın limiti

Bremermann'ın limiti, Hans-Joachim Bremermann tarafından bulunmuş olan ve kendisinin adını verdiği, materyal evrendeki bir sistemdeki ulaşılabilecek en yüksek işlem gücüdür. Kütle-enerji eşdeğerliği ve Belirsizlik ilkesi'nden türemiştir ve tam değeri kilogram başı saniyede c2/h ≈ 1.36 × 1050 bittir.[1][2] Bu değer Kriptografik algoritmalar tasarlarken önemli bir yere sahiptir. Bunun dışında enkripsiyon anahtarının sahip olması gereken en kısa uzunluğu bulurken veya brute force ile kırılmayacak şifreler oluşuturulurken de kullanılabilir.

Örneğin, Dünya ile aynı kütleye sahip ve Bremermann'ın limitine göre çalışan bir bilgisayar saniyede yaklaşık 1075 matematiksel işlem yapabilir. Eğer bir kriptografik anahtarın test edilmesi tek bir işlem alsaydı, bu durumda 128-bit bir anahtar 10−36 saniyede kırılabilirdi. Fakat 256-bit bir anahtarın (ki bu bazı sistemlerde çoktan kullanılıyor) kırılması iki dakika sürerdi. 512-bit bir anahtar kullanmak gereken zamanı 1072 yıla çıkarırdı.

Ayrıca bakınız

  • Margolous-Levitin teoremi
  • Landauer'in ilkesi
  • Bekeinstein sınırı
  • Kolmogorov karmaşıklığı
  • Transkomütasyonel problem
  • Kompütasyonun sınırları
  • Ultrafinitizm

Kaynakça

  1. ^ "Arşivlenmiş kopya". 18 Aralık 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 16 Ocak 2020. 
  2. ^ "Arşivlenmiş kopya". 16 Ocak 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 16 Ocak 2020. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">AES</span> Şifreleme standartı

AES, elektronik verinin şifrelenmesi için sunulan bir standarttır. Amerikan hükûmeti tarafından kabul edilen AES, uluslararası alanda da defacto şifreleme (kripto) standardı olarak kullanılmaktadır. DES'in yerini almıştır. AES ile tanımlanan şifreleme algoritması, hem şifreleme hem de şifreli metni çözmede kullanılan anahtarların birbiriyle ilişkili olduğu, simetrik-anahtarlı bir algoritmadır. AES için şifreleme ve şifre çözme anahtarları aynıdır.

<span class="mw-page-title-main">Elektronik imza</span>

Elektronik imza ya da sayısal imza, başka bir elektronik veriye eklenen veya elektronik veriyle mantıksal bağlantısı bulunan ve kimlik doğrulama amacıyla kullanılan elektronik veridir. E-imza olarak da bilinir. Elektronik ortamlarda imza yerine kullanılabilen yasal kimlik doğrulama sistemidir. Elektronik imza, elektronik belge'ye girilen bir isim kadar basit olabilir. Dijital imzalar, elektronik imzaları kriptografik olarak korunan bir şekilde uygulamak için e-ticarette ve düzenleyici dosyalarda giderek daha fazla kullanılmaktadır. Özellikle e-ticaretin hızlı yükselişi nedeniyle daha fazla önem kazanmştır. Elektronik imza sayesinde imzalanmış verinin, kimin tarafından imzalandığı ve güvenilirliği kontrol edilmiş olur. Elektronik imza; iletilen bilginin bütünlüğünün bozulmadığını, bilginin tarafların kimlikleri doğrulanmak suretiyle iletildiğini garanti eder. Ulusal Standartlar ve Teknoloji Enstitüsü veya ETSI gibi standardizasyon ajansları, bunların uygulanması için standartlar sağlar.

Gizli anahtarlı şifreleme ya da simetrik şifreleme, kriptografik yöntemlerden, hem şifreleme hem de deşifreleme işlemi için aynı anahtarı kullanan kripto sistemlere verilen isimdir. Haberleşen tarafların aynı anahtarı kullanmaları gerektiği için burada asıl sorun anahtarın karşıya güvenli bir şekilde iletilmesidir. Simetrik şifreleme, anahtar karşıya güvenli bir şekilde iletildiği sürece açık anahtarlı şifrelemeden daha güvenlidir. Anahtar elinde olmayan birisi şifrelenmiş metni ele geçirse de şifrelenmiş metinden asıl metni bulması mümkün değildir. Simetrik şifrelemede haberleşen tarafların her biri için bir anahtar çifti üretilmelidir. Bu yüzden de çok fazla anahtar çifti üretilmesi gereklidir.

Blowfish, Bruce Schneier tarafından 1993 yılında tasarlanmış, çok sayıda şifreleyici ve şifreleme ürününe dahil olan; anahtarlanmış, simetrik bir Block Cipher dir. Blowfish ile ilgili olarak şu ana kadar etkin bir şifre çözme analizi var olmasa da, artık AES ya da Twofish gibi daha büyük ebatlı öbek şifreleyicilerine daha fazla önem verilmektedir.

<span class="mw-page-title-main">Süper bilgisayar</span> döneminde aşırı güçlü olan bilgisayar

Süper bilgisayar basit olarak; yoğun paralel işlemciler, yüksek başarımlı vektör işlemciler ve öbek bilgisayarların oluşturduğu sistem olarak tanımlanabilir. Süper bilgisayarlar bilimde, deney ve hesaplamayı birleştiren hesaplamalı bilim gibi yeni metodolojilerin oluşmasını sağlamıştır. Günümüzde süper bilgisayarlar saniyede yüzlerce trilyon işlem yapar hale gelmiştir. Örneğin, dünyanın en hızlı süper bilgisayarı saniyede 136,8 trilyon kalıcı işlemle Amerika'da Lawrance Livermore National Laboratuvary isimli ulusal laburatuarın kullanımındadır Süper bilgisayarlar ilk defa 1960'larda Seymour Cray tarafından Control Data Corporation'da tasarlandı.

Döngüsel artıklık denetimi, çoğunlukla sayısal şebekelerde ve depolama cihazlarında kullanılan ve ham veride yapılan hatalı değişimleri algılayan, uygulaması kolay ve güvenliği güçlü bir hata bulma yöntemidir.

<span class="mw-page-title-main">Intel 80188</span>

Intel 80188 8 bit harici veri yolu ile Intel 80186 mikroişlemci sürümü, 16 bit yerine biridir. Bu da daha az çevre birimlerine bağlamak için pahalı hale getirir. 80188 en çok 80.186 ya benzer, saniyede 1.000.000 talimatları işleyen bir akış vardı.

<span class="mw-page-title-main">Dijital İmza Algoritması</span>

Dijital İmza Algoritması dijital imza için bir FIPS standardıdır. Ağustos 1991'de National Institute of Standards and Technology (NIST) tarafından tasarlanmıştır. Dijital imza algoritması, ElGamal İmza Algoritması'nın bir varyantıdır.

<span class="mw-page-title-main">Kriptografik özet fonksiyonu</span>

Kriptografik özet fonksiyonu çeşitli güvenlik özelliklerini sağlayan bir özet fonksiyonudur. Veriyi belirli uzunlukta bir bit dizisine, (kriptografik) özet değerine, dönüştürür. Bu dönüşüm öyle olmalıdır ki verideki herhangi bir değişiklik özet değerini değiştirmelidir. Özetlenecek veri mesaj, özet değeri ise mesaj özeti veya kısaca özet olarak da adlandırılır.

Kriptografide blok şifreleme, blok olarak adlandırılmış sabit uzunluktaki bit grupları üzerine simetrik anahtar ile belirlenmiş bir deterministik algoritmanın uygulanmasıdır. Blok şifreleme birçok kriptografik protokol tasarımının önemli temel bileşenlerindendir ve büyük boyutlu verilerin şifrelemesinde yaygın biçimde kullanılmaktadır.

Goldwasser–Micali (GM) kriptosistemi 1982 yılında Shafi Goldwasser ve Silvio Micali tarafından geliştirilmiş bir asimetrik anahtar şifreleme algoritmasıdır. GM standart kriptografik varsayımlar altında güvenliği kanıtlanmış ilk probabilistik açık anahtar şifreleme yöntemidir. Bununla birlikte başlangıç düz metinden yüzlerce kez daha geniş olan şifreli metinler olduğundan verimli bir kriptosistem değildir. Kriptosistemin güvenlik özelliğini kanıtlamak için Shafi Goldwasser ve Silvio Micali anlamsal güvenliğin geniş alanda kullanılan bir tanımını önerdiler.

<span class="mw-page-title-main">Eliptik eğri kriptografisi</span>

Eliptik Eğri Kriptolojisi, sonlu cisimler üzerindeki eliptik eğrilerin cebirsel topolojisine dayanan bir açık anahtar şifrelemesidir. Eliptik Eğri Kriptolojisi, diğer şifrelemeler göre daha küçük anahtar boyuna ihtiyaç duyar.

<span class="mw-page-title-main">Donanımsal güvenlik modülü</span>

Donanımsal Güvenlik Modülleri, güçlü kimlik doğrulama için gerekli sayısal anahtarları koruyup yöneten ve kripto işleme sağlayan fiziksel bir aygıttır. Geleneksel olarak bu modüller takılabilir kart veya bir bilgisayar ya da ağ sunucusuna takılabilen harici bir aygıt şeklindedir.

<span class="mw-page-title-main">HMAC</span>

Kriptografide, HMAC, kriptografik özet fonksiyonu ve gizli bir kriptografik anahtar içeren bir mesaj doğrulama kodu türüdür. Diğer MAC türleri gibi, HMAC de hem veri bütünlüğünü kontrol etmek hem de mesaj içeriğini onaylamakta kullanılabilir. HMAC in hesaplanmasında herhangi bir kriptografik özet fonksiyonu kullanılabilir. Örneğin, HMAC in hesaplanmasında MD5 veya SHA-1 özet fonksiyonu kullanılması durumunda, ilgili MAC algoritması da buna uygun olarak HMAC-MD5 veya HMAC-SHA1 olarak isimlendirilebilir. HMAC'in kriptografik saldırılara karşı dayanıklılığı, kullanılan özet fonksiyonunun dayanıklılığına, elde edilen özetin boyutuna, kullanılan kriptografik anahtarın boyutuna ve kalitesine bağlıdır.

<span class="mw-page-title-main">Gerçek rassal sayı üreteci</span>

Programlama alanında kullanılan donanım rassal sayı üreteci bilgisayar programı kullanmayarak, fiziksel bir işleyiş ile rassal sayı üretimi için kullanılır. Bu tip cihazlar genel olarak mikroskobik olay tabanlı, istatistiksel olarak rassal gürültü sinyalleri içeren; ısıl gürültü, fotoelektrik etkisi kullanan hüzme bölücü ve diğer kuantum etkisi içeren olayları kullanır. Bu stokastik süreçler, teoride önceden kestirilemez ve teorinin öne sürdüğü sava göre deneysel test sonuçlarına tabiidir. Bir donanım rassal sayı üreteci genel olarak bir tip fiziksel bir gücü elektrik sinyaline dönüştürmek için güç çevirici, rassal dalgalanma genliklerini ölçülebilir seviyelere getirebilmek için güç yükselteç ve diğer elektrik devreleri ve de çıkışı sayısal bir veriye dönüştürebilmek için bir çeşit analog sayısal çevirici içerir. Genel olarak elde edilen sayı ikili sayı sisteminin elemanları olan 0 veya 1 dir. Arka arkaya alınan rassal değişen sayı örnekleri sayesinde sıralı olarak rassal sayılar elde edilir.

Kriptografi 'de bir 'Lamport imzası' veya 'Lamport bir defalık imza şeması' dijital imza oluşturmak için kullanılan bir yöntemdir. Lamport imzaları, kriptografik olarak güvenli herhangi bir tek yönlü fonksiyon ile oluşturulabilir; genellikle bir Kriptografik özet fonksiyonu kullanılır.

Kriptografide, doldurma birçok farklı uygulamaya işaret eder.

<span class="mw-page-title-main">Güç analizi</span>

Kriptografide güç analizi, saldırganın bir kriptografik donanım cihazının güç tüketimini incelediği bir yan kanal saldırısı biçimidir. Saldırı, kriptografik anahtarları ve diğer gizli bilgileri cihazdan invaziv olmayan bir şekilde çıkarabilir.

Kriptografide, bir zamanlama saldırısı, saldırganın kriptografik algoritmaları yürütmek için geçen zamanı analiz ederek bir kriptosistemi tehlikeye atmaya çalıştığı yan kanal saldırısıdır. Bir bilgisayardaki her mantıksal işlemin yürütülmesi zaman alır ve zaman girdiye göre değişebilir; her işlem için tam zaman ölçümleriyle, bir saldırgan girdiye geriye doğru çalışabilir.

Kriptografide, ilklendirme vektörü kısaca İV ya da ilklendirme değişkeni, tipik olarak rastgele veya sözde rassal olması gereken bir şifreleme temelinin sabit boyuta sahip olan girdisidir. Bu rastgelelik, şifreleme işlemlerinde anlamsal güvenliği sağlamak için çok önemlidir. Anlamsal güvenlik tek bir şifreleme yönteminin aynı anahtar ile tekrar tekrar kullanılmasının şifrelenmiş mesajın bölümleri arasındaki ilişkileri çıkarmasına izin vermediği bir özelliktir. Blok şifreleri için, İV kullanımı çalışma kipleri ile açıklanmaktadır. Ayrıca, evrensel hash fonksiyonları ve buna dayanan mesaj kimlik doğrulama kodları gibi diğer temel öğeler için de rastgeleleştirme gereklidir.