Öklid geometrisinde, Brahmagupta formülü, kenarların uzunlukları göz önüne alındığında herhangi bir kirişler dörtgeninin (daire içine çizilebilen dörtgen) alanını bulmak için kullanılır.
Formül
Brahmagupta formülü, kenarlarının uzunluğu a, b, c, d olan bir kirişler dörtgeninin K alanını aşağıdaki şekilde verir:
burada s, yarı çevre olarak aşağıdaki şekilde tanımlanır;
Bu formül, bir üçgenin alanını hesaplamak için verilen için Heron formülünü genelleştirir. Bir üçgen, bir kenarı sıfır olan bir dörtgen olarak kabul edilebilir. Bu perspektiften, d sıfıra yaklaştıkça, bir kirişler dörtgeni, çember içine çizilen bir üçgene yakınsar (tüm üçgenler çember içine çizilebilir) ve Brahmagupta formülü, Heron formülüne sadeleştirilir.
Yarı çevre kullanılmazsa, Brahmagupta formülü aşağıdaki şekilde yazılır:
Başka bir eşdeğer versiyon da aşağıdaki gibidir:
İspat
Trigonometrik ispat
Burada sağdaki şekildeki gösterimler kullanılmıştır. Kirişler dörtgeninin K alanı, △ADB ve △BDC alanlarının toplamına eşittir:
Ancak ABCD bir kirişler dörtgeni olduğundan, ∠DAB = 180° − ∠DCB. Dolayısıyla, sin A = sin C 'dir. Bu nedenle,
Ortak kenar DB için çözülürse, △ADB ve △BDC üçgenlerinde Kosinüs yasası aşağıdaki özdeşliği verir:
cos C = −cos A (A ve C açıları bütünler açı olduğu için) yerine konur ve eşitlik yeniden düzenlenirse aşağıdaki ifade elde edilir;
Bunu alan denkleminde yerine yazarsak,
Sağ taraf a2 − b2 = (a − b)(a + b) biçimindedir ve bu nedenle şu şekilde yazılabilir:
köşeli parantez içindeki terimleri yeniden düzenledikten sonra,
Yarı çevre S = p + q + r + s/2 olarak dikkate alınırsa,
Her iki tarafın karekökünü alırsak,
elde edilir.
Trigonometrik olmayan ispat
Trigonometrik olmayan alternatif bir kanıt, Heron'un üçgen alan formülünün benzer üçgenler üzerindeki iki uygulamasını kullanır.[1]
Kirişler dörtgenine kirişini çizelim. ve doğru parçasını uzatalım, böylece noktasında kesişsinler.
ve açıları, çemberin iki yayından aynı kirişini görür. Bu nedenle bütünler açılardır. , 'nin bütünleyicisidir. Yani 'dir. ve benzerdir. Benzerlik oranı ise 'dir.
dörtgeninin alanına A ve üçgeninin alanına da T diyelim.
ve olarak alınarak Heron formülü uygulanırsa, aşağıdaki şekilde bulunur:
Bu nedenle,
(Not: Bu noktada ÜÇGEN'in yarı çevresi için s kullandık. Aşağıda, s, e ve f için a, b, c ve d cinsinden terimleri yerine koyacağız. Sonunda dörtgenin yarı çevresini temsil eden s kullanıma geri döneceğiz.)
İlk olarak, e’yi a, b, c ve d cinsinden ifade etmek istiyoruz.
veya
Sonra, f’yi a, b, c ve d cinsinden ifade etmek istiyoruz.
Şimdi, üçgen formüllerinde yukarıda elde ettiğimiz ve ifadelerini yerine koyarak devam edeceğiz.
Şimdi, 'yı hesaplayalım.
Benzer şekilde, şimdi 'yi a, b, c ve d cinsinden hesaplayalım.
Şimdi 'yi hesaplayalım.
Şimdi dörtgenin alanını a, b, c, d cinsinden hesaplamaya hazırız.
Bu nedenle,
burada s, kirişler dörtgenin yarı çevresi yani
'dir.
Kirişler dörtgeni olmayan dörtgenlere genişletme
Kirişler dörtgeni olmayan dörtgenler söz konusu olduğunda, Brahmagupta formülü, dörtgenin iki zıt açısının ölçüleri dikkate alınarak genişletilebilir:
burada θ herhangi iki zıt açının toplamının yarısıdır. (Hangi zıt açı çiftinin seçimi önemsizdir: diğer iki açı alınırsa, toplamlarının yarısı 180° − θ'dir. cos(180° − θ) = −cos θ olduğundan, cos2(180° − θ) = cos2θ ederiz. Bu daha genel formül Bretschneider formülü olarak bilinir.
Bir dörtgenin zıt açılarının toplamının 180°'ye eşit olması, kirişler dörtgeninin (ve nihayetinde çevre açıların) bir özelliğidir. Sonuç olarak, bir çevrel dörtgen durumunda, θ açısı 90°'dir, bu nedenle
olup Brahmagupta formülünün temel biçimini verir. İkinci denklemden, bir kirişler dörtgenin alanının, verilen kenar uzunluklarına sahip herhangi bir dörtgen için mümkün olan maksimum alan olduğu sonucu çıkar.
Coolidge tarafından kanıtlanan ilgili bir formül de genel bir dışbükey dörtgen alanını verir.[2]
burada p ve q, dörtgenin köşegenlerinin uzunluklarıdır. Batlamyus teoremine göre bir kirişler dörtgeninde pq = ac + bd 'dir ve Coolidge formülü, Brahmagupta formülüne indirgenir.
İlgili teoremler
Bir üçgenin alanını hesaplamak için Heron formülü, d = 0 alınarak elde edilen özel durumdur.
Maley ve diğerleri tarafından açıklandığı gibi, çemberler üzerindeki genel çokgenlerin alanı için giderek karmaşıklaşan kapalı biçimli formüller mevcuttur.[3]
Kaynakça
^Hess, Albrecht, "A highway from Heron to Brahmagupta", Forum Geometricorum 12 (2012), 191–192.
^J. L. Coolidge, "A Historically Interesting Formula for the Area of a Quadrilateral", American Mathematical Monthly, 46 (1939) ss. 345-347.
^Maley (2005). "On the areas of cyclic and semicyclic polygons". Advances in Applied Mathematics. 34 (4): 669-689. doi:10.1016/j.aam.2004.09.008.
Bu makale, Creative Commons Attribution/Share-Alike Lisansı altında lisanslanan PlanetMath üzerinde Brahmagupta formülünün kanıtından materyal içermektedir.
İlgili Araştırma Makaleleri
Bir üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimidir. Üçgene müselles ve üçbucak da denir.
Trigonometri, üçgenlerin açıları ile kenarları arasındaki bağıntıları konu edinen matematik dalı. Trigonometri, sinüs ve kosinüs gibi trigonometrik işlevlerin (fonksiyon) üzerine kurulmuştur ve günümüzde fizik ve mühendislik alanlarında sıkça kullanılmaktadır.
Geometride, elips bir koninin bir düzlem tarafından kesilmesi ile elde edilen düzlemsel, ikinci dereceden, kapalı eğridir.
Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:
Elektriksel gücün tanımı aşağıdaki gibidir.
Euler spirali, eğimi eğrinin uzunluğuyla doğrusal olarak degişen bir eğridir. Euler spiralleri yaygın olarak spiros, clothoids veya Cornu spiralleri olarak da adlandırılır. Euler spirallerinin kırınım hesaplamalarında uygulamaları vardır. Genellikle demiryolu ve karayolu mühendisliklerinde teğet eğrisi ve dairesel eğri arasındaki geometriyi bağdaştırmaya ve aktarmaya yarayan geçiş eğrisi olarak kullanılır. Teğet eğrisi ve dairesel eğri arasındaki geçiş eğrisinin eğimindeki lineer değişim prensibi Euler spiralinin geometrisini belirler:
Eğimi teğetin düzgün kesitinden başlayarak lineer olarak eğri boyunca artar.
Euler spiralinin dairesel eğriyle karşılaştığı yerde eğimi dairesel eğrinin eğimine eşit olur.
Geometride kiriş, bir çemberde, iki uç noktası da çemberin üstünde bulunan doğru parçası. Sekant, sekant doğrusu veya kesen, bir kirişin doğruya uzatılmış halidir. Diğer bir ifadesiyle, kiriş bir kesenin çember içinde kalan kısmıdır. Kiriş daha genel anlamıyla, herhangi bir eğrinin iki noktasını birleştiren doğru parçasıdır. Çemberin merkezinden geçen kiriş, aynı zamanda çemberdeki en uzun kiriş, o çemberin çapıdır.
Heron formülü, kenar uzunlukları bilinen bir üçgenin alanını hesaplamaya yarayan geometri formülüdür. Yunan matematikçi Heron tarafından bulunmuştur.
Geometride açıortay teoremi, bir üçgenin kenarının karşı açıyı ikiye bölen bir çizgiyle bölündüğü iki parçanın göreli uzunluklarıyla ilgilidir. Göreli uzunluklarını, üçgenin diğer iki kenarının göreli uzunluklarına eşitler.
Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.
Geometride, Brahmagupta teoremi, eğer bir kirişler dörtgeni ortodiyagonal ise, o zaman köşegenlerin kesişme noktasından bir kenara çizilen dikmenin karşı kenarı daima ikiye böldüğünü belirtir. Adını Hint matematikçi Brahmagupta'dan (598-668) almıştır.
Geometride, Bretschneider formülü, genel bir dörtgen verildiğinde, dörtgenin kenarları ve karşı açıları ile dörtgenin alanı arasındaki ilişkiyi gösteren bir ifadedir.
Brune teoremi, bir orta düzey Prusya memuru olan muhasebeci Ernst Wilhelm Brune (1790?-1860?) tarafından bulunan ve 1841 yılında Berlin'de yayınlanan, dörtgenlerle ilgili bir temel geometri teoremidir. Teorem, Öklid düzleminde bir dışbükey dörtgeninin yapıcı bir şekilde aynı alana sahip dört kısmi dörtgene nasıl bölünebileceği problemini ele alır ve yanıtlar.
Geometride, çift merkezli (bicentric) çokgen, teğet bir çokgendir ve aynı zamanda döngüsel yani kirişler dörtgenidir - yani, çokgenin her köşesinden geçen bir çevrel çember içine çizilmiştir. Tüm üçgenler ve tüm düzgün çokgenler çift merkezlidir. Öte yandan, kenarları eşit olmayan bir dikdörtgen çift merkezli değildir, çünkü hiçbir çember dört kenara da teğet olamaz.
Öklid geometrisinde, bir çift merkezli dörtgen, hem bir iç teğet çembere hem de çevrel çembere sahip olan bir dışbükey (konveks) dörtgendir. Bu çemberlerin çevreleri, yarıçapları ve merkezlerine sırasıyla iç çap (inradius) ve çevrel çap (circumradius), iç merkez (incenter) ve çevrel merkez (circumcenter) denir. Tanımdan, çift merkezli dörtgenlerin hem teğetler dörtgeninin hem de kirişler dörtgeninin tüm özelliklerine sahip olduğu anlaşılmaktadır. Bu dörtgenler için diğer isimler kiriş-teğet dörtgeni ve iç teğet ve dış teğet dörtgenidir. Ayrıca nadiren çift çemberli dörtgen ve çift işaretlenmiş dörtgen olarak adlandırılmıştır.
Dik üçgen yükseklik teoremi veya geometrik ortalama teoremi, bir dik üçgendeki hipotenüs üzerindeki yükseklik uzunluğu ile hipotenüs üzerinde oluşturduğu iki doğru parçası arasındaki ilişkiyi tanımlayan temel geometrinin bir sonucudur. İki doğru parçasının geometrik ortalamasının yüksekliğe eşit olduğunu belirtir.
Temel cebirde, kuadratik formül, bir ikinci dereceden denklemin köklerini (çözümlerini) bulan bir formüldür. İkinci dereceden bir denklemi çözmek için ikinci dereceden formülü kullanmak yerine çarpanlara ayırma, tam kareye tamamlama, grafik çizme ve diğerleri gibi başka yollar da vardır.
Trigonometride Mollweide formülü, bir üçgendeki kenarlar ve açılar arasındaki bir çift ilişkidir.
Geometride, bir çokgenin yarı çevresi, çevre uzunluğunun yarısıdır. Çevreden doğrudan türetilebilmesine rağmen, yarı çevre üçgenler ve diğer şekiller için kullanılan formüllerde oldukça sık görülür ve ayrı/özel bir isim verilir. Yarı çevre, bir formülün parçası olarak ortaya çıktığında, genellikle s harfiyle gösterilir.
Öklid geometrisinde, bir kirişler dörtgeni veya çembersel dörtgen veya çevrimsel dörtgen, köşeleri tek bir çember üzerinde bulunan bir dörtgendir. Bu çembere çevrel çember denir ve köşelerin aynı çember içinde olduğu söylenir. Çemberin merkezi ve yarıçapı sırasıyla çevrel merkez ve çevrel yarıçap olarak adlandırılır. Bu dörtgenler için kullanılan diğer isimler eş çember dörtgeni ve kordal dörtgendir, ikincisi, dörtgenin kenarları çemberin kirişleri olduğu içindir. Genellikle dörtgenin dışbükey (konveks) olduğu varsayılır, ancak çapraz çevrimsel dörtgenler de vardır. Aşağıda verilen formüller ve özellikler dışbükey durumda geçerlidir.
Bu sayfa, bu Vikipedi makalesine dayanmaktadır. Metin, CC BY-SA 4.0 lisansı altında mevcuttur; ek koşullar uygulanabilir. Görseller, videolar ve sesler kendi lisansları altında mevcuttur.