İçeriğe atla

Bozulmuş dağılım

Bozulmuş
Olasılık kütle fonksiyonu
Bozulmuş dağılım için k0=0 halinde olasılık kütle fonkiyonu grafiği
Yatay eksen ki için i endeksidir. Fonksiyon sadece tam sayı endeksler için geçerlidir. Noktaları bağlayan çizgiler süreklilik ifade etmez.
Yığmalı dağılım fonksiyonu
Bozulmuş dağılım için k0=0 halinde yığmalı olasılık fonkiyonu grafiği
Yatay eksen ki için i endeksidir.
Parametreler
Destek
Olasılık kütle fonksiyonu (OYF)
Birikimli dağılım fonksiyonu (YDF)
Ortalama
Medyan
Mod
Varyans
Çarpıklık
Fazladan basıklık
Entropi
Moment üreten fonksiyon (mf)
Karakteristik fonksiyon

Matematik bilim dalında bir bozulmuş dağılım desteği sadece tek bir noktadan oluşan bir ayrık rassal değişken için bir olasılık dağılımıdır. Bu rassal değişken için örnekler her iki tarafı da yazı olan özel bir madeni (para veya) disk veya her altı yüzü de aynı sayıyı gösteren özel bir zar olabilir. Örneklerden de görülebildiği gibi, bu türlü rassal değişken günlük yaşantıya göre hiç rastgelelik niteliği taşımamaktadır; ancak matematik bilimi içinde bulunan rassal değişken tanımlama özelliklerinin hepsini tatmin etmektedir.

Bozulmuş dağılım reel doğru üzerinde tek bir nokta olan k0 üstünde konumlanmıştır. Olasılık kütle fonksiyonu şöyle verilir:

Yığmalı dağılım fonksiyonu şudur:

Sabit rassal değişken

Olasılık kuramı bilim dalında, bir sabit rassal değişken ortaya çıkan herhangi bir olaydan hiç etkilenmeden devamlı olarak sadece sabit bir değer alan bir ayrık rassal değişkendir.

Teknik bakimdan bu kavram nerede ise mutlaka sabit rassal değişken kavramından değişiktir. Bu ikinci tip değişken diğer değerler alabilir ama bunların her biri için olasılık sıfırdır; yani imkân vardır ama ihtimal yoktur. Bu çeşit sabit rassal değişken ve nerede ise mutlaka sabit rassal değişken tanımlamaları suretiyle olasılık kuramı çerçevesi içine sabit değerler kavrami yerleştirilebilmektedir.

X: Ω → R olasılık uzayı içinde olan (Ω, P) bir rassal değişken olarak tanımlansın. O zaman, eğer

ise X bir nerede ise mutlaka sabit rassal değişken olacaktır. Eğer aynı zamanda

ise, X bir sabit rassal değişken olacaktır.

Görüldüğü gibi bir sabit rassal değişken her zaman nerede ise mutlaka sabit bir rassal değişkendir, ancak bunun aksinin gerçekliği her halde gerekli değildir. Çünkü, X nerede ise mutlaka sabit ise o zaman X(γ) ≠ c özelliği olan bir γ ∈ Ω olayı ortada bulunmasını düşünmek mümkündür; (ama bunun olasılığı mutlaka sıfır olacaktır).

Pratik problem çözümleri için X değerinin sabit oluşu ya da nerede ise mutlaka sabit oluşu hiç önemli değildir. Çünkü olasılık kütle fonksiyonu f(x) ve yığmalı dağılım fonksiyonu F(x), X değerinin sabit oluşuna veya nerede ise mutlaka sabit oluşuna bağımlı olmadığı gayet açıktır. Her iki halde de,

ve

F(x) fonksiyonu bir basamaklı fonksiyon olur.

Ayrıca bakınız

Kaynakça

İlgili Araştırma Makaleleri

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.

Bernoulli dağılımı olasılık kuramı ve istatistik bilim dallarında, p olasılıkla başarı ile 1 değeri alan ve olasılıkla başarısızlık ile 0 değeri alan bir ayrık olasılık dağılımıdır. İsmi ilk açıklamayı yapan İsviçreli bilim insanı Jakob Bernoulli anısına verilmiştir.

Bir olasılık dağılımı bir rassal olayın ortaya çıkabilmesi için değerleri ve olasılıkları tanımlar. Değerler olay için mümkün olan tüm sonuçları kapsamalıdır ve olasılıkların toplamı bire eşit olmalıdır. Örneğin, bir rassal olay olarak madeni paranın tek bir defa havaya atılıp yere düşmesi ele alınsın; değerler 'yazı' veya 'tura' veya bunlar isimsel değişken ölçeğinde ifade edilirse 0 (yazı) veya 1 (tura) olur; olasılıklar ise her iki değer için ½ olacaktır. Böylece madeni bir paranın tek bir defa atılma olayı için iki değer ve ilişkili iki olasılık bu rassal olayın olasılık dağılımı olur. Bu dağılım ayrık olasılık dağılımıdır; çünkü sayılabilir şekilde ayrı ayrı sonuçlar ve bunlara bağlı olan pozitif olasılıklar vardır.

<span class="mw-page-title-main">Tekdüze dağılım (ayrık)</span>

Ayrık tekdüze dağılım, olasılık kuramı ve istatistik bilim kollarında, bir rassal değişken için belirli bir alt ve üst sınır tam sayı arasında mümkün olan bir sıra tam sayı sonuç değerlerin hepsinin eşit ölçüde olasılık göstermesi özelliğini taşıyan ayrık olasılık dağılımıdır.

<span class="mw-page-title-main">Zeta dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, zeta dağılımı bir ayrık olasılık dağılımıdır. Eğer X s parametresi ile zeta dağılımı gösteren bir bir rassal değişken ise, Xin k tam sayısı değerini almasının olasılığı şu olasılık kütle fonksiyonu ile belirtilir:

<span class="mw-page-title-main">Beta dağılımı</span>

Olasılık kuramı ve istatistikte, beta dağılımı, [0,1] aralığında iki tane pozitif şekil parametresi ile ifade edilmiş bir sürekli olasılık dağılımları ailesidir. Çok değişkenli genellemesi Dirichlet dağılımıdır.

Olasılık kuramı ve istatistik bilim dalları içinde Rademacher dağılımı, bu dağılımı ilk inceleyen Hans Rademacher'in adı verilmiş, bir ayrık olasılık dağılımıdır. Bu dağılım sadece iki değeri olan bir ayrık rassal değişkenin, yani +1 ve -1 değerlerinin %50er şansla dağılmasını gösterir.

<span class="mw-page-title-main">Üstel dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında üstel dağılımı bir sürekli olasılık dağılımları grubudur. Sabit ortalama değişme haddinde ortaya çıkan bağımsız olaylar arasındaki zaman aralığını modelleştirirken bir üstel dağılım doğal olarak ortaya çıkar.

<span class="mw-page-title-main">Tekdüze dağılım (sürekli)</span> Özel olasılık dağılımı

Sürekli tekdüze dağılım (İngilizce: continuous uniform distribution) olasılık kuramı ve istatistik bilim dallarında, her elemanı, olasılığın desteklendiği aynı büyüklükteki aralık içinde bulunabilir, her sürekli değer için aynı sabit olasılık gösteren bir olasılık dağılımları ailesidir. Desteklenen aralık iki parametre ile, yani minimum değer a ve maksimum değer b ile, tanımlanmaktadır. Bu dağılım kısa olarak U(a,b) olarak anılır.

Olasılık kuramı ve istatistik bilim kollarında, multinom dağılımı binom dağılımının genelleştirilmesidir.

<span class="mw-page-title-main">Laplace dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Laplace dağılımı Pierre-Simon Laplace anısına isimlendirilmiş bir sürekli olasılık dağılımıdır. Arka arkaya birbiriyle yapıştırılmış şekilde ve bir de konum parametresi dahil edilerek birleştirilmiş iki üstel dağılımdan oluştuğu için, çift üstel dağılımı adı ile de anılmaktadır. İki bağımsız ve tıpatıp aynı şekilde üstel dağılım gösteren bir rassal değişken bir Laplace dağılımı ile işlev görürler. Bu, aynen üstel dağılım gösteren rassal zamanda değerlendirilen Brown devinimine benzer.

Olasılık kuramı ve istatistik bilim dalları içinde matris normal dağılımı tek değişebilirli normal dağılımının çok değişkenli olarak genelleştirilmesidir.

Olasılık teorisi ya da ihtimaliyet teorisi rastgele olayların analizi ile ilgilenen bir matematik bilim dalıdır. Olasılık teorisinin ana ögeleri rassal değişkenler, saf rassal süreçler, olaylar olarak sayılabilir. Bunlar ya tek olarak ortaya çıkan veya bir zaman dönemi içinde gelişerek meydana gelen, ilk görünüşü rastgele bir şekilde olan deterministik olmayan olayların veya ölçülebilir miktarların matematiksel soyutlamalarıdır. Bir madeni parayı yazı-tura denemesi için havaya atmak veya bir zarı atmak ile ortaya çıkan sonuç ilk bakışta rastgele bir olay olarak görülebilirse bile eğer birbirini takip eden rastgele olaylar tekrar tekrar ortaya çıkartılırsa incelenebilecek ve tahmin edilebilecek belirli bir istatistiksel seyir takip ettikleri görülecektir. Bu türlü olaylar ve sonuçların seyirlerini betimleyen iki temsilci matematiksel sonuç büyük sayılar yasası ve merkezsel limit teoremidir.

<span class="mw-page-title-main">Ayrık olasılık dağılımları</span>

Olasılık kuramı içinde bir olasılık dağılımı eğer bir olasılık kütle fonksiyonu ile karakterize edilmiş ise ayrık olarak anılır. Böylelikle bir rassal değişken olan X için dağılım ayrık ise o zaman X bir ayrık rassal değişken olarak bilinir. Bu halde

<span class="mw-page-title-main">Olasılık kütle fonksiyonu</span>

Olasılık kuramı bilim dalında bir olasılık kütle fonksiyonu bir ayrık rassal değişkenin olasılığının tıpatıp belli bir değere eşit olduğunu gösteren bir fonksiyondur. Olasılık kütle fonksiyonu, olasılık yoğunluk fonksiyonundan farklıdır; çünkü olasılık yoğunluk fonksiyonu yalnızca sürekli rassal değişkenler için tanımlanmış olup doğrudan doğruya olasılık değerini vermezler. Olasılık yoğunluk fonksiyonunun bir belli değer aralığı için integrali alınırsa bu rassal değişkenin belirlenen değer aralığı için olasılığını verir.

Olasılık kuramı ve istatistik bilim dallarında birikimli dağılım fonksiyonu bir reel değerli rassal değişken olan Xin olasılık dağılımını tümüyle tanımlayan bir fonksiyondur. Olasılık dağılım fonksiyonu veya sadece dağılım fonksiyonu olarak da anılmaktadır. Her bir reel sayı olan x için X'in birikimli dağılım fonksiyonu şöyle ifade edilir:

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken X için olasılık yoğunluk fonksiyonu bir reel sayılı sürekli fonksiyonu olup f ile ifade edilir ve şu özellikleri olması gereklidir:

Olasılık kuramı içinde herhangi bir rassal değişken için karakteristik fonksiyon, bu değişkenin olasılık dağılımını tüm olarak tanımlar. Herhangi bir rassal değişken X için, gerçel doğru üzerinde, bu fonksiyonu tanımlayan formül şöyle yazılır:

Olasılık kuramı bilim dalında matematiksel beklenti veya beklenen değer veya ortalama birçok defa tekrarlanan ve her tekrarda mümkün tüm olasılıklarını değiştirmeyen rastgele deneyler sonuçlarından beklenen ortalama değeri temsil eder. Bir ayrık rassal değişkennin alabileceği bütün sonuç değerlerin olasılıklarıyla çarpılması ve bu işlemin bütün değerler üzerinden toplanmasıyla elde edilen değerdir. Bir sürekli rassal değişken için rassal değişken ile olasılık yoğunluk fonksiyonunun çarpımının aralığı belirsiz integralidir. Fakat dikkat edilmelidir ki bu değerin genel pratik anlamla rasyonel olarak beklenmesi pek uygun olmayabilir, çünkü matematiksel beklentiin olasılığı çok düşük belki sıfıra çok yakın olabilir ve hatta pratikte matematiksel beklenti bulunmaz. Ağırlıklı ortalama olarak da düşünülebilir ki değerler ağırlık katsayıları verilen olasılık kütle fonksiyonu veya olasılık yoğunluk fonksiyonudur.

Koşullu beklenti, koşullu beklenen değer veya koşullu ortalama, olasılık kuramı bilim dalında bir reel değerli rassal değişken için bir koşullu olasılık dağılımı na göre matematiksel beklentidir.