İçeriğe atla

Bozon

Parçacık fiziğinde, bozonlar Bose-Einstein yoğunlaşmasına uyan parçacıklardır; Satyendra Nath Bose ve Einstein'a atfen isimlendirilmişlerdir. Fermi-Dirac istatistiklerine uyan fermiyonların tersine, farklı bozonlar aynı kuantum konumunu işgal eder. Böylece, aynı enerjiye sahip bozonlar uzayda aynı mekânı işgal edebilirler. Bu nedenle her ne kadar parçacık fiziğinde her iki kavram arasındaki ayrım kesin belirgin değilse de, fermiyonlar genelde madde ile bileşikken, bozonlar sıklıkla güç taşıyıcı parçacıklardır.

Bozonlar ya fotonlar gibi elementer ya da mezonlar gibi karşıt olabilirler. Buçuklu tam sayılı spinlere sahip olan fermiyonların aksine; tüm gözlenen bozonlar tam sayılı spinlere sahiptir.

Spin-istatistik teoremine göre; herhangi bir mantıklı Relativistik Kuantum Alan Teorisinde, buçuklu-tamsayılı parçacıkları olan spinler fermiyonken, tam sayılı spinlere sahip olan parçacıklar bozondurlar.

Çoğu bozonlar bileşik parçacıklar olmakla birlikte, Standart Model içinde beş temel bozon vardır:

Ayar bozonlarının aksine, Graviton henüz deneysel olarak gözlemlenmemiştir. Süperakışkanlık ve diğer Bose-Einstein yoğunlaşmaları uygulamalarında bileşik bozonlar önemlidir.

Tanım ve temel özellikler

İki bozon bulunduran bir boyutlu bir sistemin dalga denklemi. Sonsuz kuyu potensiyelinin n=1 ve n=3 enerji durumlarını içerir.

Tanım olarak, bozonlar Bose-Einstein istatistikleri'ne uyan parçacıklardır; iki bozon yer değiştirdiğinde dalga denklemi değişmez. Fermiyonlar ise Fermi-Dirac istatistikleri ve Pauli dışlama prensibine uyar: iki fermiyon aynı kuantum durumuna sahip olamaz, sonuç olarak fermiyonun bu özelliğinden dolayı maddenin "katılığı" ya da "direngenliği" gözlenir. Fermiyonlar maddenin yapı taşı olarak bilinirken, bozonlar etkileşimin yapı taşıkuvvet taşıyıcı) veya radyasyonu meydana getiren olarak bilinirler. Bozonların alanı, kanonik değişim ilişkisine uyan alandır.

Bose-Einstein yoğunlaşması, laser, maser ve süperakışkan helyum-4ün özellikleri bozon istatistiğinden kaynaklanır. Başka bir sonucu da foton gazının termal dengedeki tayfı olan Planck tayfıdır. Örneklerden biri kara cisim ışıması, bir başka örnek ise bugün arka plan mikrodalga ışıması olarak gözlenen Evren'in erken opak dönemimdeki termal ışımasıdır. Temel parçacıklar arasındaki etkileşime temel etkileşimler denir. Zahirî bozonların gerçek parçacıklarla temel etkileşimleri bilinen tüm kuvvetleri meydana getirir.

Bilinen tüm temel ve bileşik parçacıklar spinlerine bağlı olarak fermiyon ya da bozondur: yarım tam sayı spinli parçacıklar fermiyon, tam sayı spinli parçacıklar bozondur. Göreceli olmayana kuantum mekaniğini çerçevesinde bu tamamen deneysel bir gözlemdir. Ancak göreceli kuantum mekaniğinde spin istatistikleri teoremi, yarım tam sayı spinli parçacıkların bozon olamayacağını ve tam sayı spinli parçacıkların da fermiyon olamayacağını göstermiştir.

Büyük sistemlerde bozonik ve fermiyonik istatiklerin arasındaki fark, sadece yüksek yoğunluklarda (dalga denklerlerinin çakışma durumunda) ortaya çıkar. Düşük yoğunluklarda her iki istatistiklik de klasik mekanik tarafından tanımlanan Maxwell-Boltzmann istatistikleri ile açıklanabilir.

Temel bozonlar

Gözlenen tüm temel parçacıklar fermiyon ya da bozondur. Gözlenen temel bozonlar ayar bozonları: fotonlar, gluonlar ile W ve Z bozonlarıdır.

  • Fotonlar elektromanyetik alannın taşıyıcısıdır.
  • Gluonlar güçlü çekirdek kuvvetinin altında yatan kuvvet taşıyıcılardır.
  • W ve Z bozonları zayıf çekirdek kuvvetinin ortamını meydana getirir.

Bunlara ek olarak standart model Higss mekanizması sonucu diğer parçacıkların kütleye sahip olmalarını sağlayan bozonunın olduğunu iddia eder.

Son olarak, kuantum yerçekimine birçok yaklaşım yerçekimi kuvvetinin taşıyıcısı olan iki spinli graviton olduğunu iddia eder.

Bileşik bozonlar

Bileşik parçacıklar (atomlar, çekirdekler ve hadronlar gibi) yapı taşlarına bağlı olarak bozon ya da fermiyon olabilirler. Daha net olarak spin ve istatistiksel ilişkilerden dolayı çift sayıda fermiyon içeren parçacıklar tam sayı spine sahip olacağından bozondurlar.

Örneğin;

  • Fermiyonik bir tane kuark ve bir tane karşı kuark içeren mezon bozondur.
  • Karbon-12nin çekirdeği altı proton ve altı nötron (hepsi fermiyondur)) içerdiğinden bozondur.
  • Helyum-4 atomu iki proton, iki elektron ve iki nötron içerir ve bu sebepten bozondur.

Potansiyellerle bağlanan temel parçacıklardan meydana gelen bileşik parçacıklardaki bozon sayısının parçacığın bozon ya da fermiyon olması üzerine bir etkisi yoktur.

Birleşik parçacıkların (ya da sistemin) fermiyonik ya da bozonik özelliği büyük uzaklıklarda (sistemle kıyaslandığında) gözlenir. Boyutsal yapısının önemli olduğu yakınlıkta, bileşik parçacık (ya da sietem) bileşenlerine göre davranış özelliği gösterir. Örneğin iki tane Helyum-4 atomu eğer helyum atomunun kendi iç yapısıyla (~10−10m) kıyaslanırsa, Helyum-4'ün bozonik özelliklerine rağmen uzayda aynı yerde bulunamazlar. Bu sebepten sıvı helyumun, normal sıvı maddelerle kıyasla sonlu bir yoğunluğu vardır.

Diğer bozonlar

Graviton standart modelde olmasa da oldukça kabul edilebilir teorik bir Ayar Bozonudur. Ancak gravitonun doğası gereği fiziksel olarak algılanması (ölçülmesi) mümkün değildir.

Ayrıca bakınız

  • Anyon
  • Bozonik alan
  • Eş parçacıklar
  • Süperakışkan

Kaynakça

İlgili Araştırma Makaleleri

Temel etkileşimler veya Temel kuvvetler, fiziksel sistemlerde daha temel etkileşimlere indirgenemeyen etkileşimlerdir. Bilinen dört temel etkileşim vardır. Bunlar uzun mesafelerde etkileri olabilen kütleçekimsel, elektromanyetik etkileşimler ve atomaltı mesafelerde etkili olan güçlü nükleer ve zayıf nükleer etkileşimlerdir. Her biri bir alan dinamiği olarak anlaşılmalıdır. Bu dört etkileşim de matematiksel açıdan bir alan olarak modellenebilir. Kütleçekim, Einstein'ın genel görelilik kuramı tarafından tanımlanan uzay-zamanın eğriliğe atfedilirken diğer üçü ayrı kuantum alanlar olarak nitelendirilir ve etkileşimlerine Parçacık fiziğinin Standart Modeli tarafından tanımlanan temel parçacıklar aracılık eder.

Fermiyon, parçacık fiziğinde, Fermi-Dirac istatistiğine uyan parçacıktır. Başka bir deyişle, Enrico Fermi ve Paul Dirac'ın gösterdiği üzere, Bose-Einstein istatistiğine sahip bozonların aksine fermiyonlar, belirtilen zamanda sadece bir kuantum durumuna karşılık gelebilen parçacıklardır. Eğer iki ayrı fermiyon uzayda aynı yerde tanımlanmışsa her bir fermiyonun özelliği birbirinden farklı olmak zorundadır. Örnek olarak, iki elektron bir çekirdeğin etrafında aynı orbitalde bulunacaklarsa, bu kez aynı spin durumunda olamazlar ve her orbitalde elektronun biri yukarı diğeri aşağı spin durumundadır.

<span class="mw-page-title-main">Parçacık fiziği</span>

Parçacık fiziği, maddeyi ve ışınımı oluşturan parçacıkların doğasını araştıran bir fizik dalıdır. Parçacık kelimesi birçok küçük nesneyi andırsa da, parçacık fiziği genellikle gözlemlenebilen, indirgenemez en küçük parçacıkları ve onların davranışlarını anlamak için gerekli temel etkileşimleri araştırır. Şu anki anlayışımıza göre bu temel parçacıklar, onların etkileşimlerini de açıklayan kuantum alanlarının uyarımlarıdırlar. Günümüzde, bu temel parçacıkları ve alanları dinamikleriyle birlikte açıklayan en etkin teori Standart Model olarak adlandırılmaktadır. Bu yüzden günümüz parçacık fiziği genellikle Standart Modeli ve onun olası uzantılarını inceler.

<span class="mw-page-title-main">Pauli dışarlama ilkesi</span> Kuantum mekaniği prensibi: iki özdeş fermiyon aynı anda, aynı kuantum halinde bulunamazlar.

Pauli dışarlama ilkesi ya da Pauli dışlama ilkesi, iki ya da daha çok özdeş fermiyonun aynı kuantum durumda olamayacağını belirten bir kuantum mekaniği yasasıdır. Bu yasa, kuramsal fizikçi Wolfgang Pauli tarafından 1925 yılında bulunmuştur. İlk bulunuşunda yasa yalnızca elektronlar için geçerliyken, 1940 yılında Spin-istatistik teoreminin bulunmasıyla birlikte bütün fermiyonları kapsayacak biçimde genişletilmiştir.

<span class="mw-page-title-main">Atomaltı parçacık</span> Atomdan küçük, atomu da oluşturan maddeler.

Atomdan küçük, atomu da oluşturan maddeler. En çok bilinenleri, alt parçacıklardan (kuarklardan) oluşan proton ve nötron; lepton olan elektrondur. Yapısı tamamen keşfedilmemiş atomaltı parçacıklara örnek olarak foton (ışık), bozon, mezon, fermiyon, baryon ve graviton verilebilir.

<span class="mw-page-title-main">Atom çekirdeği</span> Atomun çekim kuvvetinin etkisiyle, çevresinde elektronlar dolaşan, proton ve nötronlardan oluşan pozitif elektron yüklü merkez bölümü

Atom çekirdeği, atomun merkezinde yer alan, proton ve nötronlardan oluşan küçük ve yoğun bir bölgedir. Atom çekirdeği 1911 yılında Ernest Rutherford tarafından keşfedildi. Bu keşif, 1909 yılında gerçekleştirilen Geiger-Marsden deneyine dayanmaktadır. Nötronun James Chadwick aracılığıyla 1932 yılında keşfinden sonra, çekirdeğin proton ve nötronlardan oluştuğu modeli Dmitri Ivanenko ve Werner Heisenberg tarafından çabucak geliştirildi. Atomun kütlesinin neredeyse tamamı çekirdek içerisindedir, elektron bulutunun atom kütlesine katkısı oldukça azdır. Proton ve nötronlar çekirdek kuvveti tarafından çekirdeği oluşturmak için birbirlerine bağlanmıştır. 

<span class="mw-page-title-main">Bose-Einstein yoğunlaşması</span>

Bose-Einstein yoğunlaşması (BEY), parçacıkları bozonlardan oluşan maddelerin en alt enerji seviyesinde yoğunlaştığı, kuantum etkilerinin gözlenebildiği maddenin bir halidir. Bozonik atomlar için, seyreltilmiş gaz halinde lazer soğutması aracılığıyla mutlak sıfır sıcaklığına doğru inilerek bu hale geçiş yani yoğunlaşma sağlanabilir. Atomların klasik gazlardan farklı olarak Maxwell-Boltzmann istatistiği yerine Bose-Einstein istatistiğine makroskobik olarak/büyük ölçekte uyması BEY'nin belirleyici özelliğidir.

Süper simetri, parçacık fiziğinde uzay-zaman simetrisinin karşılığıdır. Bu iki temel parçacıktan oluşur.

Gluonlar kuarklar arasındaki güçlü etkileşimi sağlayan temel parçacıklardır. Bu etkileşim fotonların elektromanyetik etkileşmedeki rolüne benzer bir şekilde iki yüklü parçacık arasında momentum değişimini sağladığı düşüncesi ile benzerlik kurularak anlaşılabilir.

Parçacık fiziğinde şu anda bilinen ve kuramsal olan temel parçacıkları ve bu parçacıklarla oluşturulabilen bileşik parçacıkları içeren listedir.

W ve Z bozonları, zayıf etkileşime aracılık eden temel parçacıklardır. Bu bozonların keşfi parçacık fiziğinin Standart Modeli için büyük bir başarının müjdecisi oldu.

<span class="mw-page-title-main">Süpersicim teorisi</span>

Süpersicim kuramı parçacıkları ve temel kuvvetleri çok küçük süpersimetrik sicimlerin titreşimleri şeklinde modelleyerek onları tek bir kuramda anlatmayı amaçlayan bir denemedir. Kuram, kuantum kütleçekim kuramları arasında en umut verici olanlardan biri olarak düşünülür. Süpersicim kuramı, süpersimetrik sicim kuramı için bir stenodur çünkü bozonik sicim kuramından farklı olarak o sicim kuramının fermiyonları ve süpersimetriyi birleştiren bir versiyonudur.

<span class="mw-page-title-main">Ayar bozonu</span>

Ayar bozonları doğadaki 4 temel kuvvetin taşıyıcı parçacıklarına verilen genel addır. Fotonlar, gluonlar, W ve Z bozonları ve graviton olarak 4 farklı ayar bozonu vardır. Graviton hariç diğer bütün parçacıkların varlığı ve kütleleri tespit edilmiştir. Gravitonlar ise şu an için sadece teorik olarak bilinmektedir. Henüz gözlenememiştir.

<span class="mw-page-title-main">Satyendra Nath Bose</span> Hint matematikçi ve fizikçi (1894–1974)

Satyendra Nath Bose, Royal Society üyesi Hint matematikçi ve fizikçi.

<span class="mw-page-title-main">Temel parçacık</span> Başka parçacıklardan oluştuğu bilinmeyen parçacıklar.

Temel parçacıklar, bilinen hiçbir alt yapısı olmayan parçacıklardır. Bu parçacıklar evreni oluşturan maddelerin temel yapıtaşıdır. Standart Model'de kuarklar, leptonlar ve ayar bozonları temel taneciklerdir.

<span class="mw-page-title-main">Süperakışkanlık</span>

Süperakışkanlık maddenin sıfır akmazlığa sahip bir akışkan gibi davrandığı hâlidir. Bu fenomen ilk olarak sıvı helyum ile keşfedildiyse de yalnızca sıvı helyum teorisinde değil aynı zamanda astrofizik, yüksek enerji fiziği ve kuantum kütleçekimi teorilerinde de uygulama alanına girmiştir. Bu fenomen Bose-Einstein yoğunlaşması ile bağıntılıdır ancak özdeş değildir: Bütün Bose-Einstein yoğuşukları süperakışkan olmadığı gibi bütün süperakışkanlar da Bose-Einstein yoğuşuğu değildir.

Parçacık istatistiği, çoklu parçacıklar istatistiksel mekaniğinin özel tanımıdır. Ana kavram, istatistiksel veriler aracılığıyla ayrı parçacıkların parametreleri belirlenirken, büyük sistemin özelliklerinin bir bütünmüş gibi vurgulanmasıdır. Veri grubu benzer özellikler gösteren parçacıklar içerdiğinde, bu parçacıkların numaraları parçacık numarası olarak adlandırılır ve “N” ile gösterilir.

Fizikte sanal parçacık, sıradan parçacıkların özelliklerini sergileyen fakat sınırlı bir süreliğine var olan geçici dalgalanma olarak tanımlanır. Sanal parçacık kavramı sıradan parçacıklar arasındaki etkileşimi sanal parçacıklar arasındaki değiş tokuş olarak tanımlayan kuantum alan teorisinin Pertürbasyon teorisi kısmında ortaya çıkar. Sanal parçacıkları içeren herhangi bir süreç sanal parçacıkları iç çizgilerle temsil eden ve Feynman diyagramı olarak bilinen şematik tasarımı doğrular.

Kuantum mekaniğinde spin, tüm temel parçacıkların özgün bir özelliğidir. Sıradan maddeleri oluşturan fermiyonlar, yarım tam sayı spine sahiptir. Bilinen tüm temel fermiyonlar 1/2 spinlidir.

Parçacık fiziğinde, vektör bozon, spini 1' e eşit olan bozondur.Standart Modelde temel parçacık olarak değerlendirilen vektör bozonlar ayar bozonlarıdır.Ayar bozonları, elektromagnetizmanın fotonlarının, zayıf etkileşimlerin W ve Z bozonlarının temel etkileşimlerinin kuvvet taşıyıcılarıdır. Bazı bileşik parçacıklar vektör bozondur. Misal, bütün vektör mezonlar vektör bozondur.