İçeriğe atla

Boyut

Soldan sağa, kare, küp ve tesseract. Karenin çevresi bir boyutlu doğrular, küp iki boyutlu alanlar ve tesseract da üç boyutlu hacimler tarafından sınırlandırılmıştır.
  1. İki nokta birbirine bağlanarak bir doğru parçası oluşturur.
  2. İki paralel doğru parçası birbirine bağlanarak bir kare oluşturur.
  3. İki paralel kare birbirine bağlanarak bir küp oluşturur.
  4. İki paralel küp birbirine bağlanarak bir tesseract oluşturur.

Fizik ve matematikte bir uzayın ya da nesnenin boyutu, gayriresmî olarak bu uzay ve nesne üzerindeki herhangi bir noktayı belirlemek için gereken minimum koordinat sayısı olarak tanımlanır.[1][2] Bir doğru üzerindeki bir noktayı tanımlamak için bir koordinat gerektiğinden doğrunun bir boyutu vardır (örneğin sayı doğrusu üzerindeki 5 noktası). Düzlem, kare ya da daire yüzeyinin iki boyutu vardır, çünkü bu yüzeyler üzerindeki herhangi bir noktayı tanımlamak için iki koordinata ihtiyaç vardır (örneğin kare üzerindeki bir noktayı tanımlamak için hem enleme, hem de boylama ihtiyaç vardır). Yine aynı şekilde küre, silindir ya da küpün içindeki bir noktayı tanımlamak için üç koordinat gerektiğinden bu boşluk üç boyutludur. İzafiyet Teorisi'nde ise zaman, dördüncü ve uzaysal olmayan boyut olarak eklenir.

Klasik mekanikte uzay ve zaman farklı kategorilerdir ve mutlak uzay ve zamanı ifade eder. Bu dünya kavramı, elektromanyetizmayı tanımlamak için gerekli olan tanım hariç, dört boyutlu bir uzaydır. Uzay-zamanın dört boyutu (4B), uzamsal ve zamansal olarak kesin olarak tanımlanmayan, daha ziyade bir gözlemcinin hareketine göre bilinen olaylardan oluşur. Minkowski uzayı, önce yerçekimsiz evrene yaklaşır; genel göreliliğin pseudo-Riemannian manifoldları uzay-zamanı madde ve yerçekimi ile tanımlar. Süpersicim teorisini (6D hiperuzay + 4D) tanımlamak için 10 boyut kullanılır, 11 boyut süper kütleçekimini ve M teorisini (7D hiperuzay + 4D) tanımlayabilir ve kuantum mekaniğinin durum uzayı sonsuz boyutlu bir fonksiyon alanıdır.

Boyut sayısı
Örnek koordinat sistemleri
1
Sayı doğrusu
Sayı doğrusu
Açı
Açı
2
Kartezyen sistem (2b)
Kartezyen (iki boyutlu)
Kutupsal sistem
Kutupsal
Coğrafi sistem
Enlem ve boylam
3
Kartezyen sistem (3b)
Kartezyen (üç boyutlu)
Silindirik sistem
Silindirik
Küresel sistem
Küresel

Boyut kavramı fiziksel nesnelerle sınırlı değildir. Matematikte ve bilimlerde yüksek boyutlu uzaylar sıklıkla görülür. Lagrange veya Hamilton mekaniğindeki gibi parametre uzayları veya konfigürasyon uzayları olabilirler; bunlar, içinde yaşadığımız fiziksel alandan bağımsız olan soyut alanlardır.

İlave boyutlar

Fizikte üç uzay boyutu ve bir de zaman boyutu kabul gören normdur. Fakat temel kuvvetleri birleştirmeye çalışan teoriler, bu amaçla daha fazla boyut eklemektedirler. Süpersicim teorisi, M teorisi ve Bozonsal sicim teorisi, fiziksel uzayın sırasıyla 10, 11 ve 26 boyutlu olduğunu iddia ederler. Bu ilâve boyutların uzaysal olduğu söylenir. Fakat biz ancak üç uzaysal boyutu algılarız ve bugüne kadar ne deneysel, ne de gözlemsel deliller, ilave boyutların varlığını tasdik etmez. Muhtemel bir açıklama, uzayın atomaltı ölçekte (muhtemelen kuark/sicim ölçek seviyesi veya daha altta) ilave boyutların içine "sarılmış gibi" davrandığıdır.

Aralık 2012'de Büyük Hadron Çarpıştırıcısı sonuçlarının analizi, büyük ilave boyutlu teorileri ciddî şekilde sınırlamıştır.[3]

Uzaya ilave boyutlar eklemiş başka fizîki teorilerse şunlardır:

  • Kaluza–Klein teorisi, kütleçekimi dışındaki kuvvetleri açıklamak için ilave boyutlar getirir (aslen sadece elektromanyetizma).
  • Büyük ilave boyutlar ve Randall–Sundrum Modeli, kütleçekimin zaafını açıklamaya çalışır. Bu özellik brane kozmolojisinde kullanılır.
  • Evrensel ilave boyutlar

Kaynakça

  1. ^ "What is a dimension?". cornell.edu. 4 Haziran 2003. 24 Ocak 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 24 Ocak 2012. 
  2. ^ "MathWorld: Dimension". mathworld.wolfram.com. 5 Eylül 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 24 Ocak 2012. 
  3. ^ CMS Collaoration, "Search for Microscopic Black Hole Signatures at the Large Hadron Collider," http://arxiv.org/abs/1012.3375 12 Temmuz 2015 tarihinde Wayback Machine sitesinde arşivlendi.

Konuyla ilgili yayınlar

İlgili Araştırma Makaleleri

Temel etkileşimler veya Temel kuvvetler, fiziksel sistemlerde daha temel etkileşimlere indirgenemeyen etkileşimlerdir. Bilinen dört temel etkileşim vardır. Bunlar uzun mesafelerde etkileri olabilen kütleçekimsel, elektromanyetik etkileşimler ve atomaltı mesafelerde etkili olan güçlü nükleer ve zayıf nükleer etkileşimlerdir. Her biri bir alan dinamiği olarak anlaşılmalıdır. Bu dört etkileşim de matematiksel açıdan bir alan olarak modellenebilir. Kütleçekim, Einstein'ın genel görelilik kuramı tarafından tanımlanan uzay-zamanın eğriliğe atfedilirken diğer üçü ayrı kuantum alanlar olarak nitelendirilir ve etkileşimlerine Parçacık fiziğinin Standart Modeli tarafından tanımlanan temel parçacıklar aracılık eder.

<span class="mw-page-title-main">Sicim teorisi</span> makro ve mikro kosmosun teorilerini birleştirmeye çalışan teori. (her şeyin teorisi)

Sicim teorisi, parçacık fiziğinde, kuantum mekaniği ile Einstein'in genel görelilik kuramını birleştiren bir teori. "Sicim" adı, klasik yaklaşımda "sıfır boyutlu noktalar" şeklinde tarif edilen atomaltı parçacıkların, aslında "bir boyutlu ve ipliksi varlıklar" olabileceği varsayımına dayanır.

<span class="mw-page-title-main">M teorisi</span>

İngilizce'deki açılımı membrane theory yani zar kuramıdır. Güncel paradigmanın tanımlamalarına göre, bir kuram olmadığından baş harfi ile anılır. Beş farklı sicim kuramını birleştirme çabasıdır ve her şeyin kuramı olmaya en muhtemel adaydır.

<span class="mw-page-title-main">Faz uzayı</span>

Matematik ve Fizik'te, bir faz uzayı içinde bir sistemin tüm olası durumlarının temsil edildiği bir uzaydır, sistemin her olası durumuna karşılık faz uzayında bir tek nokta vardır. Mekanik sistemler için, faz uzayı genellikle konum ve momentum değişkenlerinin tüm olası değerlerinden oluşur. Konum ve momentum değişkenlerinin zamana göre değişiminin bir fonksiyonunun çizimi bazen bir faz diyagramı olarak adlandırılır. Bununla beraber, bu terim genellikle fiziki bilimlerde kimyasal bir sistemin termodinamik fazlarının dengesini ve birbirlerine dönüşümünü, basıncın, sıcaklığın ve kompozisyonun bir fonksiyonu olarak gösteren bir diyagram için kullanılır.

<span class="mw-page-title-main">Süpersicim teorisi</span>

Süpersicim kuramı parçacıkları ve temel kuvvetleri çok küçük süpersimetrik sicimlerin titreşimleri şeklinde modelleyerek onları tek bir kuramda anlatmayı amaçlayan bir denemedir. Kuram, kuantum kütleçekim kuramları arasında en umut verici olanlardan biri olarak düşünülür. Süpersicim kuramı, süpersimetrik sicim kuramı için bir stenodur çünkü bozonik sicim kuramından farklı olarak o sicim kuramının fermiyonları ve süpersimetriyi birleştiren bir versiyonudur.

Kuantum kütleçekim kuramsal fiziğin bir dalı olup doğanın temel kuvvetlerinden üçünü tanımlayan kuantum mekaniği ile dördüncü temel kuvveti kütleçekimin kuramı olan genel göreliliğini birleştireceği düşünülen bir kuramdır.

<span class="mw-page-title-main">Hiperuzay</span> bilimkurgu terimi

Hiperuzay, bilimkurgu eserlerinde zaman zaman kullanılan daha hızlı uzay ulaşımı anlamına gelen bir terimdir. En iyi bilinen örnekleri ise Star Wars'da ve Isaac Asimov tarafından yazılan Foundation adlı eserde kullanılmıştır. Genellikle hiperuzaya erişebilmek için gemilerde Hiperuzay Cihazı bulunması gerekir. Gemiler hiperuzaya girdiklerinde kendi enerji kaynaklarını kullanmaktadır, yani hiper uzayda ilerlerken birden enerjisi tükenen bir gemi hiperuzaydan aniden çıkar ve uzayın derinliklerinde kaybolur ama yedek bir enerji kaynakları varsa bunu devreye sokarak yeniden hiperuzay sıçrayışı yapabilirler, tabii bunun için bulundukları konumun koordinatlarını bilmeleri gerekiyor.

<span class="mw-page-title-main">Ayar teorisi</span> Fizikte bir teori

Ayar teorisi veya ayar kuramı, kuramsal fizikte temel etileşmeleri açıklar. Türkçede bazen yerelleştirilmiş bakışım kuramı olarak da geçer.

Fizikte konuşlanma sistemi farklı zaman dilimlerinde nesnelerin konum ve yönelim gibi özelliklerini belirlemek ve ölçmek için kullanılan bir koordinat sistemini ifade etmektedir. Ayrıca bu özelliklerin temsilinde kullanılan kümelerini de içerebilmektedir. Daha zayıf bir anlamda, bir konuşlanma sistemi yalnızca koordinatları betimlememektedir, aynı zamanda bu sistemde hareket eden nesnelerin ayırt edilmesinde her zaman dilimi için aynı üç boyutlu alanları da tanımlamaktadır.

Kuramsal fizikte, süper kütleçekimi genel görelilik kuramı ve süpersimetriyi birleştiren bir alan kuramıdır. Süper kütleçekiminde, süper simetri bölgesel simetridir. Süper simetrinin üreteçleri Poincaré grubu ve süper-Poincaré cebiri ile sarılmıştır, süper kütleçekiminin süper simetriyi doğal olarak takip ettiği görülebilir.

<span class="mw-page-title-main">Mutlak zaman ve mekan</span>

Aslen Sir Isaac Newton tarafından Doğa Felsefesinin Matematiksel İlkeleri adlı kitabında tanıtılan mutlak zaman ve mekan kavramları Newton mekaniğini kolaylaştıran teorik bir temel sağlamıştır. Newton'a göre, mutlak zaman ve mekan sırasıyla nesnel gerçekliğin bağımsız yönleridir. Mutlak, gerçek ve matematiksel zaman, kendisi ve kendi doğası gereği değişmeyen ve değiştirilmeyen şekilde akar ve diğer bir deyişle ‘süre’ denir; göreceli, görünür ve genel zaman, hareketle ifade edilen sürenin makul ve dış ölçüsüdür ki bu da genellikle ‘gerçek zaman’ olarak adlandırılır.

Kuantum alan kuramındaki birçok ilke sicim kuramı ile açıklanır:

Sicim kuramı, diğer fiziksel bilimlerin tarihinin aksine çekirdek bilimi ile daha alakalı bir tarihe sahiptir. Sicim kuramı, aslında fiziksel olarak test edilemeyen bir bilim olduğundan, fizik olup olmadığı tartışmaya açıktır, ancak kuramın türev paralelleri test edilebilir fiziktir. Dolayısıyla, kuramın gelişimini anlamak için kendi içindeki disiplinini anlamak oldukça işe yarayacaktır. Sicim kuramı, parçacık fiziğindeki noktasal parçacıkların yerini tek boyutlu sicim adında nesnelerin aldığını iddia eder kuramsal bir sistemdir. Birbirini izleyen girişimler bu kuramın özlü tarihi olmaktadır.

<span class="mw-page-title-main">Fiziksel cisim</span> kütle, konum veya momentum gibi genel özellikler birlikte bir madde ya da ışınımın eşsiz şekilde toplanması, birleştirilmesi

Fiziksel cisim, fiziksel nesne veya fiziksel obje, 3 boyutlu uzayda dönme veya çevirme hareketiyle hareket etmek için daha fazla veya az sıkıştırılmış maddenin toplamı.

Fizikte, hayat çizgisi bir objenin 4 boyutlu uzayda işlediği yola denir. Objenin geçmiş mekanını her an takip etmeye de bu ad verilir. Hayat çizgisi yörüngeden ayrı bir kavramdır. Bu kavramlar zaman boyutuyla ayrılır. Ve genelde yörüngelerden daha geniş bir alanı temsil ederler, diğerlerine oranla özel göreliliğin gerçek doğasını ortaya çıkarırlar. Bu fikir Hermann Minkowski tarafından ortaya atılmıştır.Bu terim, genelde Görelilik Teorisinde kullanılır.

Teorik fizikte anti- de Sitter/ konformal alan teorisi yazışması iki çeşit fiziksel teori arasındaki tahmini ilişkidir. Bir tarafta kuantum yerçekimi teorilerinde kullanılan ve M- teorisi veya sicim teorisi ile formülize edilen anti-de Sitter uzayları (AdS) vardır. Yazışmanın diğer tarafında kuantum alan teorileri olan ve temel parçacıkları tanımlayan Yang-Mills teorilerine benzer teoriler içeren konformal alan teorileri vardır.

Tüy yumakları birtakım süpersicim teoristleri tarafından, kara delikleri kuantumsal açıdan doğru tanımlamak amacıyla ortaya atılmış bir teoridir. Bu teori, modern fiziğin kara deliklere bakışındaki iki inatçı problemi çözmektedir.

  1. Karadeliğe düşen maddeler ve enerjiler, tekilliğin içerisinde kaybolurlar, dolayısıyla karadelik içine ne düşerse düşsün hiçbir fiziksel değişim geçirmezler, buna bilgi paradoksu denir.
  2. Klasik karadelik teorisine göre, karadeliğin kalbi sonsuz uzay zaman eğrilikleriyle doludur, bunun sebebi sonsuz yer çekimi ve sıfır hacimdir. Modern fizik ise sıfır ve sonsuz gibi parametreler işin içine girdiğinde bozulmaktadır.
<span class="mw-page-title-main">Uzay (geometri)</span> uygun zamanında fiziksel bir gözlemciye göre mesafeler ve yönlerin genel çerçevesi

Uzay, nesnelerin ve olayların göreceli konuma ve yöne sahip olduğu sınırsız üç boyutlu bir boyuttur. Modern fizikçiler genellikle zamanla, uzay-zaman olarak bilinen sınırsız dört boyutlu bir sürekliliğin parçası olduğunu düşünmesine rağmen, fiziksel alan genellikle üç doğrusal boyutta düşünülür. Mekan kavramının fiziksel evrenin anlaşılması için temel öneme sahip olduğu düşünülmektedir. Bununla birlikte, filozoflar arasında kendisinin bir varlık mı, varlıklar arasındaki ilişkinin mi yoksa kavramsal çerçevenin bir parçası mı olduğu konusunda anlaşmazlık devam eder.

<span class="mw-page-title-main">Dört boyutlu uzay</span>

Dört boyutlu uzay (4B), üç boyutlu veya 3 boyutlu uzay kavramının matematiksel bir uzantısıdır. Üç boyutlu uzay, gündelik yaşamdaki nesnelerin boyutlarını veya konumlarını tanımlamak için yalnızca boyut adı verilen üç sayıya ihtiyaç duyulduğu gözleminin mümkün olan en basit soyutlamasıdır. Örneğin, dikdörtgen bir kutunun hacmi, uzunluğu, genişliği ve yüksekliği ölçülerek ve çarpılarak bulunur.