Matematikte Borwein integrali, sinc(ax) ürünleri içeren bir integral'dir, burada verilen sinc fonksiyonu sinc(x) = sin(x)/x için x 0'a eşit değildir ve sinc(0) = 1.[1][2] Bu integraller sonunda yıkılı görünür kalıpları sergileyerek kötü ün yapmıştır. Aşağıdaki gibi bir örnek verilmiştir:
Bu desene kadar devam eder
Ancak bir sonraki aşamada desenin başarısız olduğu açıktır:
Genel olarak benzer integral değeri π / 2 olduğunda numaralar 3, 5, ... kendi terslerinin toplamından az olacagi sekilde pozitif gerçel sayılar ile değiştirilmiştir. 1.Yukarıdaki örnekler içinde, 1/3 + 1/5 + ... + 1/13 < 1, ama 1/3 + 1/5 + ... + 1/15 > 1'dir.
Kaynakça
- ^ Borwein, David; Borwein, Jonathan M. (2001), "Some remarkable properties of sinc and related integrals", The Ramanujan Journal, 5 (1), ss. 73-89, doi:10.1023/A:1011497229317, ISSN 1382-4090, MR 1829810
- ^ Baillie, Robert (2011). "Fun With Very Large Numbers". arXiv:1105.3943 $2.