İçeriğe atla

Bor karbür

Bor karbür

Bor karbür (B4C), çok sert bir bor-karbon seramik ve kovalent malzemedir. Madde tank zırhı, kurşun geçirmez yelekler, motor sabotaj tozlarının içinde olduğu çok sayıda endüstriyel uygulama alanına sahiptir.[1] Vickers sertliği 30 GPa'dan fazla olan bor karbür, kübik bor nitrür ve elmasın ardından bilinen en sert malzemelerden biridir.[2] Seramiğin yoğunluğu 2,52 g/cm³, molar kütlesi 55,255 g/mol, kaynama noktası 3.500 °C, PubChem Bileşik Kimlik Numarası ise 123279'dur.Türk Kara Kuvvetlerine Giren Altay Tankı'nın Zırhıda Bir Karbür'dür.

Bor karbür (kimyasal formülü yaklaşık olarak B4C), son derece sert bir bor-karbon seramiğidir, tank zırhı, kurşun geçirmez yelekler, motor sabotaj tozları[3] ve çok sayıda endüstriyel uygulamada kullanılan kovalent bir malzemedir. >30 GPa Vickers sertliği ile kübik bor nitrür ve elmasın ardından bilinen en sert malzemelerden biridir.[4]

Tarih

Bor karbür, 19. yüzyılda metal boritleri içeren reaksiyonların bir yan ürünü olarak keşfedildi, ancak kimyasal formülü bilinmiyordu. Kimyasal bileşimin B4C olarak tahmin edilmesi 1930'lara kadar gerçekleşmedi.[5] Malzemenin tam olarak 4:1 stokiyometrisine sahip olmadığı bilinmektedir; çünkü pratikte malzeme bu formüle göre her zaman biraz karbon-eksiktir ve X-ışını kristalografisi, CBC zincirleri ve B12 icosahedra karışımı ile yapısının oldukça karmaşık olduğunu göstermektedir.

Bu özellikler, çok basit bir kesin B4C ampirik formülüne karşı çıkıyordu.[6] B12 yapısal birimi nedeniyle, "ideal" bor karbürün kimyasal formülü genellikle B4C değil, B12C3 olarak yazılır ve bor karbürün karbon noksanlığı, B12C3 ve B12CBC birimlerinin bir kombinasyonu olarak tanımlanır.

Kristal yapı

B4C'nin birim hücresi. Yeşil küre ve icosahedra bor atomlarından oluşur ve siyah küreler karbon atomlarıdır.[7]
B4C kristal yapısının parçası.

Bor karbür, ikosahedron bazlı boritlere özgü karmaşık bir kristal yapıya sahiptir. Orada, B12 icosahedra bir eşkenar dörtgen kafes birimi oluşturur (boşluk grubu: R3m (No. 166), kafes sabitleri: a = 0,56 nm ve c = 1.212 nm) birim hücrenin merkezinde bulunan bir CBC zincirini çevreler ve her iki karbon atomu da komşu üç ikosahedrayı köprüler. Bu yapı katmanlıdır: B12 icosahedra ve köprü oluşturan karbonlar, c düzlemine paralel yayılan ve c ekseni boyunca kümelenen bir ağ düzlemi oluşturur. Kafesin iki temel yapı birimi vardır - B12 ikosahedron ve B6 oktahedron. B6 oktahedranın küçük boyutu nedeniyle birbirine bağlanamazlar. Bunun yerine, komşu katmandaki B12 icosahedra'ya bağlanırlar ve bu, c düzlemindeki bağ kuvvetini azaltır.[7]

B12 yapısal birimi nedeniyle, "ideal" bor karbürün kimyasal formülü genellikle B4C olarak değil, B12C3 olarak yazılır ve bor karbürün karbon noksanlığı, B12C3 ve B12C birimlerinin bir kombinasyonu olarak tanımlanır.[6] Bazı araştırmalar, stokiyometrinin karbon ağırlıklı ucunda (B11C)CBC = B4C gibi formüllere yol açan, boron açısından zengin uçta B12 (CBB) = B14C gibi formüllere yol açan, bir veya daha fazla karbon atomunun bor ikosahedraya dahil olma olasılığını göstermektedir. Dolayısıyla "bor karbür" tek bir bileşik değil, farklı bileşimlere sahip bir bileşik ailesidir. Yaygın olarak bulunan bir element oranına yaklaşan ortak bir ara madde, B12(CBC) = B6.5C'dir.[8] Kuantum mekanik hesaplamalar, kristaldeki farklı konumlardaki bor ve karbon atomları arasındaki konfigürasyon bozukluğunun, özellikle B4C bileşiminin kristal simetrisi[9] ve B13C2 bileşiminin metalik olmayan elektriksel karakteri gibi birçok malzeme özelliğini belirlediğini göstermiştir.[10]

Özellikler

Bor karbür, son derece yüksek sertliğe (Mohs sertlik ölçeğinde yaklaşık 9.5 ila 9.75), nötronların emilmesi için yüksek kesite (yani nötronlara karşı iyi koruma özellikleri), iyonlaştırıcı radyasyona ve çoğu kimyasal maddeye karşı kararlılığa sahip sağlam bir malzeme olarak bilinir.[11] Vickers sertliği (38 GPa), Elastik Katsayı (460 GPa)[12] ve kırılma tokluğu (3,5 MPa.m 1/2) elmas için karşılık gelen değerlere (1150 GPa ve 5.3 MPa.m 1/2) yaklaşır.[13]

Bor karbür, elmas ve kübik bor nitrürden sonra bilinen en sert üçüncü maddedir ve bu, ona "kara elmas" takma adını kazandırmıştır.[14][15]

Yarı iletken özellikler

Bor karbür, atlamalı tip taşımanın hakim olduğu elektronik özelliklere sahip bir yarı iletkendir.[8] Enerji bant aralığı, düzen derecesine olduğu kadar bileşime de bağlıdır. Bant aralığının, fotolüminesans spektrumunu karmaşıklaştıran çoklu orta bant aralığı durumları ile 2.09 eV olduğu tahmin edilmektedir.[8] Malzeme tipik olarak p-tipidir.

Hazırlık

Bor karbür ilk olarak 1899'da Henri Moissan tarafından boron trioksitin bir elektrik ark ocağında karbon varlığında karbon veya magnezyum ile indirgenmesiyle sentezlendi. Karbon söz konusu olduğunda, reaksiyon B4C erime noktasının üzerindeki sıcaklıklarda meydana gelir ve buna büyük miktarda karbon monoksitin serbest bırakılması eşlik eder:[16] 2 B2Ö3 + 7 C → B4C + 6 CO

Magnezyum kullanılırsa, reaksiyon bir grafit potada gerçekleştirilebilir ve magnezyum yan ürünleri asitle işlenerek çıkarılır.[17]

Birleşik Krallık Atom Enerjisi Araştırma Kurumundaki nötron deneylerinde kalkan olarak kullanılan bor karbür ile gömülü plastik

Uygulamalar

Balistik yeleklerin iç plakalarında bor karbür kullanılmaktadır.

Sertliği için :

Diğer özellikler için :

Nükleer uygulamalar

Bor karbürün uzun ömürlü radyonüklidler oluşturmadan nötronları soğurma yeteneği, onu nükleer santrallerde[18] ve anti-personel nötron bombalarından kaynaklanan nötron radyasyonu için bir emici olarak çekici kılmaktadır. Bor karbürün nükleer uygulamaları ekranlamayı içerir.[11]

Kaynakça

  1. ^ Gray, Theodore (3 Nisan 2012). The Elements: A Visual Exploration of Every Known Atom in the Universe. Black Dog & Leventhal Publishers. ISBN 9781579128951. Erişim tarihi: 6 Mayıs 2014. 
  2. ^ "Rutgers working on body armor". Asbury Park Press. Asbury Park, N.J. 11 Ağustos 2012. Erişim tarihi: 12 Ağustos 2012. ... boron carbide is the third-hardest material on earth. 
  3. ^ The Elements: A Visual Exploration of Every Known Atom in the Universe. Black Dog & Leventhal Publishers. 3 Nisan 2012. ISBN 9781579128951. Erişim tarihi: 6 Mayıs 2014.  Yazar |ad1= eksik |soyadı1= (yardım)
  4. ^ "Rutgers working on body armor". Asbury Park Press. Asbury Park, N.J. 11 Ağustos 2012. Erişim tarihi: 12 Ağustos 2012. ... boron carbide is the third-hardest material on earth. 
  5. ^ Ridgway, Ramond R "Boron Carbide" 4 Nisan 2009 tarihinde Wayback Machine sitesinde arşivlendi., European Patent CA339873 (A), publication date: 1934-03-06
  6. ^ a b Balakrishnarajan (2007). "Structure and bonding in boron carbide: The invincibility of imperfections". New J. Chem. 31 (4): 473. doi:10.1039/b618493f. 6 Temmuz 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: 25 Temmuz 2023. 
  7. ^ a b "Crystal structure of new rare-earth boron-rich solids: REB28.5C4". J. Alloys Compd. 329 (1–2): 168-172. 2001. doi:10.1016/S0925-8388(01)01581-X. 
  8. ^ a b c Domnich (2011). "Boron Carbide: Structure, Properties, and Stability under Stress" (PDF). J. Am. Ceram. Soc. 94 (11): 3605-3628. doi:10.1111/j.1551-2916.2011.04865.x. 27 Aralık 2014 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 23 Temmuz 2015. 
  9. ^ Ektarawong (2014). "First-principles study of configurational disorder in B4C using a superatom-special quasirandom structure method". Phys. Rev. B. 90 (2): 024204. arXiv:1508.07786 $2. doi:10.1103/PhysRevB.90.024204. 
  10. ^ Ektarawong (2015). "Configurational order-disorder induced metal-nonmetal transition in B13C2 studied with first-principles superatom-special quasirandom structure method". Phys. Rev. B. 92 (1): 014202. arXiv:1508.07848 $2. doi:10.1103/PhysRevB.92.014202. 
  11. ^ a b Weimer, p. 330
  12. ^ Sairam (2012). "Development of B4C-HfB2 composites by reaction hot pressing". Int.J. Ref. Met. Hard Mater. 35: 32-40. doi:10.1016/j.ijrmhm.2012.03.004. 
  13. ^ Solozhenko (2009). "Ultimate Metastable Solubility of Boron in Diamond: Synthesis of Superhard Diamondlike BC5" (PDF). Phys. Rev. Lett. 102 (1): 015506. doi:10.1103/PhysRevLett.102.015506. PMID 19257210. 21 Eylül 2017 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 25 Temmuz 2023. 
  14. ^ "Boron Carbide". Precision Ceramics. 20 Haziran 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Haziran 2015. 
  15. ^ A. Sokhansanj (2012). "Purification of Attrition Milled Nano-size Boron Carbide Powder". 2nd International Conference on Ultrafine Grained & Nanostructured Materials (UFGNSM). International Journal of Modern Physics: Conference Series. 5: 94-101. doi:10.1142/S2010194512001894. 
  16. ^ Weimer, p. 131
  17. ^ Patnaik, Pradyot (2002).
  18. ^ Fabrication and Evaluation of Urania-Alumina Fuel Elements and Boron Carbide Burnable Poison Elements 8 Nisan 2023 tarihinde Wayback Machine sitesinde arşivlendi., Wisnyi, L. G. and Taylor, K.M., in "ASTM Special Technical Publication No. 276: Materials in Nuclear Applications", Committee E-10 Staff, American Society for Testing Materials, 1959

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Seramik</span> ısı etkisiyle hazırlanan inorganik, metalik olmayan katı

Seramik iyonik veya kovalent bağlara sahip metal ve metal olmayan inorganik bileşik içeren katı bir malzemedir. Yaygın kullanım örnekleri çanak-çömlek, porselen ve tuğladır.

<span class="mw-page-title-main">Niyobyum</span>

Niyobyum, sembolü Nb, atom numarası 41 olan kimyasal elementtir.

<span class="mw-page-title-main">Nötron</span> Yüke sahip olmayan atomaltı parçacık

Nötron, sembolü n veya n⁰ olan, bir atomaltı ve nötr bir parçacıktır. Proton ile birlikte, atomun çekirdeğini meydana getirir. Bir yukarı ve iki aşağı kuark ve bunların arasındaki güçlü etkileşim sayesinde oluşur. Proton ve nötron yaklaşık olarak aynı kütleye sahiptir fakat nötron daha fazla kütleye sahiptir. Nötron ve protonun her ikisi nükleon olarak isimlendirilir. Nükleonların etkileşimleri ve özellikleri nükleer fizik tarafından açıklanır. Nötr hidrojen atomu dışında bütün atomların çekirdeklerinde nötron bulunur. Her atom farklı sayıda nötron bulundurabilir. Proton ve nötronlar, kuarklardan oluştukları için temel parçacık değildirler.

<span class="mw-page-title-main">Kaliforniyum</span> Kaliforniya Üniversitesinde keşfedilmiş bir radyoaktif element

Kaliforniyum, sembolü Cf ve atom numarası 98 olan radyoaktif metalik bir kimyasal elementtir.

<span class="mw-page-title-main">Kobalt</span> atom numarası 27 olan kimyasal bir element

Kobalt kimyasal bir element'tir. Sembol'ü Co ve atom numarası 27'dir. Nikel gibi kobalt da, doğal meteorik demir alaşımlarında bulunan küçük birikintiler dışında, yer kabuğunda yalnızca kimyasal olarak birleşik formda bulunur. İndirgeyici eritme yoluyla üretilen serbest element sert, parlak, gümüş rengi bir metal'dir.

<span class="mw-page-title-main">Organik kimya</span> karbon temelli bileşiklerin yapılarını, özelliklerini, tepkimelerini ve sentez yollarını inceleyen kimya dalı

Organik kimya, organik bileşiklerin ve organik maddelerin yani karbon atomlarını içeren çeşitli formlardaki maddelerin yapısını, özelliklerini ve reaksiyonların bilimsel çalışmasını içeren, kimyanın bir alt dalıdır. Yapının incelenmesi yapısal formüllerini belirler. Özelliklerin incelenmesi, fiziksel ve kimyasal özellikleri ve davranışlarını anlamak için kimyasal reaktivitenin değerlendirilmesidir. Organik reaksiyonların incelenmesi doğal ürünlerin, ilaçların ve polimerlerin kimyasal sentezini ve bireysel organik moleküllerin laboratuvarda ve teorik çalışma yoluyla incelenmesidir.

Alaşım, bir metal elementin en az bir başka element ile birleşmesiyle oluşan homojen karışımıdır. Elde edilen malzeme yine metal karakterli malzeme olur. Alaşımlar karışıma giren metallerin özelliklerinden farklı özellikler gösterirler. En bilinen alaşımlara; tunç (bakır-kalay), pirinç (bakır-çinko), lehim (kalay-kurşun) ve cıva alaşımları olan amalgamlar örnek verilebilir. Alaşımlar, uygulamaların gerektirdiği fiziksel özelliklere sahip malzemeler üretilmesinde yaygın olarak kullanılır.

Tennesin veya Ununseptiyum, periyodik tabloda atom numarası 117 ve sembolü Ts olan kimyasal elementtir.

<span class="mw-page-title-main">Bor</span> sembolü B ve atom numarası 5 olan kimyasal element

Bor simgesi B ve atom numarası 5 olan kimyasal elementtir. Kristal formunda kırılgan, koyu, parlak bir metaloid; amorf formunda kahverengi bir tozdur. Bor grubunun en hafif elementidir, kovalent bağlar oluşturan üç değerlik elektronuna sahiptir, bu da borik asit, mineral sodyum borat, bor karbür ve bor nitrür gibi ultra sert bor kristallerini açıklar.

<span class="mw-page-title-main">Walter Kohn</span> Amerikalı fizikçi (1923 – 2016)

Walter Kohn, John A. Pople ile birlikte 1998 Nobel Kimya Ödülü sahibi Yahudi kökenli Amerikalı fizikçi. Walter Kohn ve John Pople bu ödülü kuantum kimyası üzerine bir birlerinden bağımsız olarak yaptıkları çalışmalar üzerine almaya hak kazanmışlardır. Kohn özelde bu ödülü Atomlar arasındaki kimyasal bağları açıklamak üzere karmaşık matematiği kuantum mekaniğine uygulayarak geliştirdiği yoğunluk fonksiyonları teorisi sayesinde kazanmıştır.

<span class="mw-page-title-main">Boran</span> kimyasal bileşik

Trihidridoboron, boran veya borin, BH3 kimyasal formülü ile gösterilen dengesiz ve oldukça reaktif bir moleküldür. Boran karbonilin BH3(CO) hazırlanması, boran kimyasının araştırılmasında büyük rol oynamıştır. Ancak, BH3 molekül türleri çok güçlü Lewis asidilerdir. Sonuç olarak, oldukça reaktifdir ve doğrudan bir akış sisteminde, sürekli olarak üretilen, geçici bir ürün olarak veya lazerle çıkarılmış atomik borun hidrojen ile reaksiyonundan doğrudan gözlenebilir.

Özgül dayanım, yoğunluğa göre bölünmüş bir malzemenin gücü anlamına gelir. Aynı zamanda direnç-ağırlık oranı veya mukavemet/ağırlık oranı veya dayanım-kütle oranı olarak da bilinir. Elyaf veya dokuma uygulamalarında, dayanıklılık, belirli bir gücün olağan ölçüsüdür. Özgül dayanım için SI birimi Pa m3/kg veya Nm/kg'dır, bu boyutsal olarak m2/s2'ye eşdeğerdir, ancak ikinci biçim nadiren kullanılır. Özgül dayanım, özgül enerji ile aynı birime sahiptir ve bir nesnenin merkezkaç kuvveti nedeniyle ayrılmadan sahip olabileceği en yüksek dönme enerjisi ile ilgilidir.

<span class="mw-page-title-main">Tungsten karbür</span>

Tungsten karbür, eşit miktarda tungsten ve karbon atomu içeren kimyasal bir bileşiktir. En temel haliyle tungsten karbür ince gri bir tozdur, ancak endüstriyel makinelerde, kesme aletlerinde, aşındırıcılarda, zırh delici mermilerde ve mücevherlerde kullanım için sinterleme adı verilen bir işlemle preslenebilir ve şekillendirilebilir.

<span class="mw-page-title-main">Seramik zırh</span>

Seramik zırhlar, patlama parçalarının tutulması ve mermilerin nüfuz etmesini engellemek için kullanılır. Hafiflik avantajı ile birlikte yüksek sertlik ve basınç dayanımı ile mermi direnci için geliştirilmişlerdir. Seramik zırh, zırhlı araçlarda ve kişisel zırhlarda kullanılmaktadır.

Sementit veya demir karbür, bir demir ve karbon bileşiğidir, daha iyi bir ifadeyle Fe3C formülüne sahip bir ara geçiş metal karbürdür. Ağırlık olarak %6.67 karbon ve %93,3 demirden oluşmaktadır. Sementitin kimyasal bileşimi Fe3C olmasına rağmen, kristal yapısı hücre başına 12 demir atomu ve 4 karbon atomu ile ortorombik kristal yapıya sahiptir. Normalde saf haliyle seramik olarak sınıflandırılan sert, kırılgan bir malzemedir ve demir metalurjisinde sıklıkla bulunan ve önemli bir bileşendir. Çoğu çelik ve dökme demirde sementit bulunurken alternatif demir yapım teknolojileri ailesine ait olan demir karbür prosesinde hammadde olarak üretilir.

<span class="mw-page-title-main">Uranyum dioksit</span>

Uranyum Dioksit, diğer adıyla uranya kimyasal formülü UO2 olan maddedir. Neredeyse siyah renkli veya koyu kahverengi, radyoaktif ve kristal yapıda olan bir madde olup doğal olarak uraninit ve kleveyit minerallerinde bulunmaktadır. Nükleer santrallerde plütonyum ve uranyum dioksit karışımı yakıt çubuklarında kullanılmaktadır. Sarı ve siyah renkli seramiklerde 1960 yılına kadar kullanılmışlardır. Stoksiyometrik özelliklerine bağlı olarak erime sıcaklığı değişkendir.

<span class="mw-page-title-main">Uranyum nitrür</span> Kimyasal bileşik

Uranyum nitrür çeşitli kimyasalları ifade etmektedir: Uranyum mononitrür (UN), Uranyum seskuinitrür (U2N3) ve uranyum dinitrür (UN2). Burada nitrür kelimesi uranyuma bağlı azotun -3 oksidasyon seviyesini belirtmektedir.

<span class="mw-page-title-main">Borofen</span>

Borofen, borun kristal bir atomik tek tabakasıdır, yani borun iki boyutlu bir allotropudur ve bor levhası olarak da bilinir. İlk olarak 1990'ların ortalarında teorik olarak tahmin edilen farklı borofen yapıları 2015'te deneysel olarak doğrulandı.

Bor nitrür, bor ve nitrojenin termal ve kimyasal olarak refrakter bir bileşiğidir. Karbon kafesine benzer şekilde yapılandırılmış bir izoelektronik olan çeşitli kristal formlarda bulunur. Grafite karşılık gelen altıgen form, BN polimorfları arasında en kararlı ve yumuşak olanıdır ve bu nedenle kozmetik ürünlerde yağlayıcı ve katkı maddesi olarak kullanılır. Elmasa benzer kübik kristal yapı c-BN olarak adlandırılır; elmastan daha yumuşak, ancak termal ve kimyasal kararlılığı üstündür. Nadir wurtzite modifikasyonu, lonsdaleite benzer, ancak kübik formdan biraz daha yumuşaktır.