İçeriğe atla

Bor fiber

Bor elyaf kullanımına bir örnek; F-15 savaş uçaklarının yatay ve dikey kuyruklarının dış kaplamaları Bor- epoksi karma malzeme ile üretilmiştir.[1]
Başka bir örnek; Türk Silahlı Kuvvetleri tarafından da kullanılan Sikorsky S-70 helikopterlerinin kuyrukları TUSAŞ tarafından üretilmektedir. Yatay kuyruğun Bor-epoksi olduğu belirtilmektedir.[1]

Bor fiberler (bor filamentler / bor lifi / bor elyaf), sürekli bir ince filament veya tel üzerine borun depozisyonu ile elde edilen yapısal fiberlerdir.[2] Bor Lifi, temel borun başlıca endüstriyel kullanımını temsil eden amorf katı bir bor ürünüdür. Bor lifi, yüksek mukavemet ve yüksek elastik modülün bir birleşimini gösterir.[3]

Bor lifi genellikle güçlendirilmiş kompozit malzemelerin üretiminde kullanılmaktadır. Bor, yüksek sertlik, hafiflik, yüksek çekme dayanımı ve yüksek korozyon direnci sahiptir. Bu sebeple refrakter kaplamalarda, elektronik malzemelerde ve fiber takviyeli polimer ve metal matris kompozitlerde kullanılmaktadır.[4]

Bor fiberin temel özellikleri aşağıda listelenmiştir:

  • Bor fiber seramik monofilament elyaftır.
  • Fiberin kendisi bir kompozittir.
  • Dairesel kesit alanına sahiptir.
  • Elyaf çapı 33-400 μm (mikrometre) arasında değişmekte olup, tipik çap 140 μm'dir.
  • Bor kırılgandır. Bu sebeple bor fiber üretimi geniş çap daha düşük esneklikle sonuçlanır.
  • Bor ve tungsten arasındaki termal katsayı uyuşmazlığı, imalat sırasında oda sıcaklığına kadar soğuması sırasında termal artık gerilmelere neden olur.
  • Bor lifleri genellikle SiC ile kaplanır veya hafif alaşımları güçlendirmek için kullanıldığında erimiş metal ile temas sırasında yüzeyi korur. Ayrıca, erimiş metal ile elyaf arasındaki kimyasal reaksiyonu önler.
  • Hem gerginlikte hem de sıkıştırmada güçlüdür.
  • 650 ℃ 'a kadar doğrusal eksenel gerilme-gerinim ilişkisi sergiler.
  • Bor fiber imalatı için özel bir prosedür gerektirir. Bu sebeple üretim maliyeti nispeten yüksektir.[5]
Bor Fiber Özellikleri[6]
ÖZELLİK Birimler 4 Milyon Bor (Tipik) 5,6 Milyon Bor (Tipik) 3 Milyon Bor (Tipik)
Çap µm

inçx10ˉ³

102

4

142

5,6

76

3

Enine Kesit Şekil Yuvarlak Yuvarlak Yuvarlak
Yoğunluk g/cm³

lbs / in³

2,61

0,0094

2,48

0,0089

2,82

0,102

Termal GenleşmePPM / °C

PPM / °F

4,5

2,5

4,5

2,5

4,5

2,5

Gerilme Direnci MPa

ksi

4000

580

4000

580

-

-

Elastisite Modülleri GPa

msi

428

62

400

58

-

-

Sertlik Knoop 3200 3200 3200

İlk kullanımı

Bor fiber ilk olarak 1959'da C. P. Talley tarafından tanıtılmıştır. Ocak 1969'da Grumman Aerospace Corp. (şimdi Northrop Grumman, Falls Church, Va., ABD), F-14 Tomcat savaş uçağı için Donanma ihalesini kazanmıştır. O yılın Aralık ayında Hava Kuvvetleri, McDonnell Douglas'a (şimdiki Boeing) F-15 Eagle ihalesini vermiştir. Her iki uçakta da  titremeyi azaltmak ve uçakların kütlesini en aza indirmek amaçlanmıştır. Bu sebeple yüksek mukavemetli, yüksek modüllü bir fiber gerektiren sabit kanatlı tasarımlar yapılmıştır. O dönemde, sürekli uzunluklarda karbon fiber mevcut değildir ve cam fiberlerin yeterli modülü yoktur. Son olarak, Grumman F-14'teki yatay kuyruk kaplamaları için ve McDonnell Douglas da, F-15'teki yatay ve dikey kaplamalar ve dümen için bor elyafı seçmiştir. Bor fiber, bir üretim uygulamasında ilk yüksek performanslı fiber olarak kullanılmıştır.[7]

Nasıl üretilir

Bir elektromanyetik reaktör kullanılarak borun endüstriyel işlenmesinden elde edilen atıklardan elde edilen fiberlerin elektronik mikrofotografisi. Liflerin ortalama çapı 250 mikrondur. Büyütme 40X.

Kimyasal buhar biriktirme (CVD) yoluyla bor lifi üretimi, bir borosilikat cam reaktörde gerçekleşir. 0.0005 inç (12 µm) çapında bir tungsten substratı cıva ile kapatılmış bir gaz girişinden sokulur ve reaktörden çekilir. Substrat, bir DC (doğru akım) güç kaynağı tarafından dirençli olarak 1,300 °C'ye ısıtılırken, reaktörün tepesine bor triklorür ve hidrojen eklenir. Tungsten reaktörden geçerken, bor triklorürün hidrojen indirgemesi ile substrat üzerinde bor oluşur. Kullanılmayan bor triklorür, hidrojen klorür yan ürünü ve reaksiyona girmemiş hidrojenin gazları, reaktörün altındaki bir çıkış deliğinden boşaltılır. Bu gazlar daha sonraya temizlenir ya da gelecekteki üretim kullanımı için geri dönüştürülür.

2BCl3 + 3H2 ⇒ 2B+6HCl

Çapı tipik olarak 0.004 inç (100 um) olan bor filaman, reaktörden çıkarken başka bir cıva contasından geçer ve bir sarma makarasına sarılır. Sıralı optik tarayıcılar, sarılmadan önce fiber çapını izler ve çapın istenen spesifikasyon dahilinde olmasını sağlamak için bir geri besleme döngüsü tarafından ihtiyaç duyulduğunda hızı hızlandırmak veya yavaşlatmak için ayarlamalar yapılır. Bor lifinin benzersiz bir özelliği, lif ve reçine arasındaki mekanik tutmayı artıran pürüzlü, mısır koçanı yapısıdır.[7]

Kaynakça

  1. ^ a b "Bor Elyafı - Üsküdar Mühendishanesi". uskudar.biz. 4 Haziran 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 28 Mayıs 2021. 
  2. ^ "Prof. Dr. Bilsen Beşergil: Boron Fiberler (boron fibres)". Prof. Dr. Bilsen Beşergil. 6 Haziran 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 27 Mayıs 2021. 
  3. ^ "Boron fiber". 9 Ocak 2015 tarihinde kaynağından arşivlendi. 
  4. ^ "Boron Fiber TMA". www.tvarc.com.tr (İngilizce). 4 Eylül 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 27 Mayıs 2021. 
  5. ^ "Objectives_template". nptel.ac.in. 6 Haziran 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 27 Mayıs 2021. 
  6. ^ "Boron Fiber". Specialty Materials (İngilizce). 6 Haziran 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 27 Mayıs 2021. 
  7. ^ a b "Boron fiber: The original high-performance fiber". www.compositesworld.com (İngilizce). 25 Haziran 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 28 Mayıs 2021. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Hidrojen depolama</span>

Yapılan araştırmalar sonucunda, mevcut koşullarda hidrojenin diğer yakıtlardan yaklaşık üç kat daha ucuz olduğu ve yaygın bir enerji kaynağı olarak kullanımının, hidrojen üretiminde maliyeti düşürücü teknolojik gelişmelere bağlı olacağı ortaya çıkmıştır. Bununla birlikte, ihtiyaç fazlası elektrik enerjisinin hidrojen olarak depolanması günümüz için geçerli bir alternatiftir. Bu tarzda depolanan enerjinin yaygın olarak kullanılabilmesi, biraz da yakıt piline dayalı otomotiv teknolojilerinin geliştirilmesine bağlıdır.

<span class="mw-page-title-main">Biyogaz</span>

Biyogaz terimi temel olarak organik atıklardan kullanılabilir gaz üretilmesini ifade eder. Diğer bir ifade ile Oksijensiz ortamda mikrobiyolojik floranın etkisi altında organik maddenin karbondioksit ve metan gazına dönüştürülmesidir. Biyogaz elde edinimi temel olarak organik maddelerin ayrıştırılmasına dayandığı için temel madde olarak bitkisel atıklar ya da hayvansal gübreler kullanılabilmektedir. Kullanılan hayvansal gübrelerin biyogaza dönüşüm sırasında fermante olarak daha yarayışlı hale geçmesi sebebiyle dünyada temel materyal olarak kullanılmaktadır. Aynı zamanda tavuk gübrelerinden de oldukça verimli biyogaz üretimi sağlanabilmektedir. Tavuk gübresinin kullanımı tarım için önemlidir. çünkü bu gübre topraklarda verim amaçlı kullanılamaz. Topraklarda tuzluluğa sebep olurlar. Kullanılamayan bu gübre biyogaza dönüştürüldüğünde yarayışlı bir hal almış olur. Günümüzde biyogaz üretimi çok çeşitli çaplarda; tek bir evin ısıtma ve mutfak giderlerini karşılamaktan, jeneratörlerle elektrik üretimine kadar yapılmaktadır.

<span class="mw-page-title-main">Akrilik elyaf</span> Yalıtkan sentetik elyaf

Akrilik lifler, ortalama molekül ağırlığı ~100.000, yaklaşık 1900 monomer birimi olan polimer'den (poliakrilonitril) yapılan sentetik lifleridir. ABD'de bir elyafa "akrilik" denmesi için, o polimerin en az %85 akrilonitril monomer içermesi gerekir. Tipik komonomerler, vinil asetat veya metil akrilattır. DuPont, 1941'de ilk akrilik elyafları yapmış ve bunları Orlon adıyla tescillemişti.

<span class="mw-page-title-main">Polyester</span>

Poliester, ana zincirlerinin her tekrar biriminde ester işlevsel grup içeren polimerlerin bir kategorisidir.

<span class="mw-page-title-main">Yün</span>

Yün bazı memelilerden elde edilen hayvansal kıl kökenli doğal bir elyaf türü. Sıcak tuttuğu için battaniye ve kışlık giysilerin üretiminde kullanılır. Yün elyafı koyundan genellikle canlı hayvanlardan kırkılmak suretiyle olmak üzere değişik yöntemlerle elde edilir. Bu tür yüne kırkım yünü denir. Bu yünün ticari değeri diğer yöntemlerle elde edilenlerinkinden yüksektir. Kasaplık hayvanların kesildikten sonra derilerinin işlenmesi ile elde edilen yüne ise tabak yünü veya kasapbaşı yünü denir. Herhangi bir nedenle ölmüş hayvanın postundan elde edilen yün ise post yapağısı adını alır. Tabak yünü veya post yapağısı (yapak) deriden yolunarak alınmışsa kıl köklerini de içerdiğinden kırkım yününe göre daha düşük kalitelidir.

<span class="mw-page-title-main">Bor</span> sembolü B ve atom numarası 5 olan kimyasal element

Bor simgesi B ve atom numarası 5 olan kimyasal elementtir. Kristal formunda kırılgan, koyu, parlak bir metaloid; amorf formunda kahverengi bir tozdur. Bor grubunun en hafif elementidir, kovalent bağlar oluşturan üç değerlik elektronuna sahiptir, bu da borik asit, mineral sodyum borat, bor karbür ve bor nitrür gibi ultra sert bor kristallerini açıklar.

<span class="mw-page-title-main">Elektron demetiyle fiziksel buhar biriktirme</span>

Elektron demeti ile fiziksel buhar biriktirme işlemi, anottaki hedef malzemenin, çok yüksek vakum altında, tungsten bir flaman ile elektron bombardımanına tutulması ile gerçekleştirilir. Elektron demeti, hedefteki atomların yüzeyden koparak gaz fazına geçmesini sağlar. Buharlaştırılan bu atomlar, vakum çemberi içindeki her noktaya yapışarak ince bir film oluşmasını sağlarlar.

<span class="mw-page-title-main">Kimyasal buhar biriktirme</span>

Kimyasal buhar biriktirme. Von Guerkie, sürtünme ile kıvılcım üreten kükürt topunu, eğlence amaçlı yapması bu prosesin başlangıcı sayılır. Birbirlerine sürterek kıvılcım çıkarmakta ve hidrojensülfat oluşturulmaktaydı. 1798'de Henry, hidrokarbon gazı içerisinde, kıvılcım yaratarak karbon biriktirme yapmayı başardı.

<span class="mw-page-title-main">Karbon elyafı</span>

Karbon fiber veya karbon elyaf, teknoloji ürünü ipliksi bir tür maddedir. Ana bileşimleri Karbonlaşmış akrilik elyaftır (Orlon), katran ve naylondur. Karbon fiberin yapısı, çelikten 4,5 kat daha hafif olmasına rağmen 3 kat daha dayanıklıdır. Karbon fiber, naylon gibi esnek ve orlon gibi de orta derecede dayanıklı değildir. Daha sert ve çok daha dayanıklıdır.

Karbon elyaf takviyeli plastik veya karbon elyaf takviyeli polimer sağlam, hafif ve pahalı bir çeşit kompozit malzeme, elyaf takviyeli polimerdir. Cam elyafı'ına benzer şekilde bu kompozit yapıya mukavemet veren malzemeye karbon elyafı denilir. Polimer için en çok epoksi kullanılsa da polyester, vinil ester ya da naylon gibi başka maddelerin de kullanıldığı görülebilir. Kevlar veya alüminyum yapılarında karbon, cam gibi diğer güçlendiricilerle birlikte kullanılır. Grafit takviyeli polimer ya da Grafit elyaf takviyeli polimer (GFRP) de karbon elyafıyla takviyeli bu tür yapıları nitelemek için de kullanılır. Cam elyaf takviyeli malzemelerin de GFRP olarak tanımlanabilmesi ve karışıklık yaşanması nedeniyle bu isimlendirme çok sık kullanılmaz. Bazı ürün tanıtımlarında ise kısaca grafit elyafı denilir.

<span class="mw-page-title-main">Fiber optik iletişim</span>

Fiber optik iletişim ya da bilinen adıyla ışıklifi, optik lif boyunca ışık sinyalleri göndererek bilginin bir yerden başka bir yere iletilmesi metodudur. Işık, bilgi taşımak için yönlendirilmiş elektromanyetik taşıyıcı dalga görevi görür. İlk olarak 1970 yılında geliştirilen ışıklifli iletişim sistemleri; telekomünikasyon endüstrisinde devrim yaratmış, bilgi çağının gelişinde önemli bir rol oynamıştır. Elektriksel iletimden avantajlı olması nedeniyle ışıklifleri gelişmiş ülkelerdeki çekirdek ağlarda bakır tellerin iletişimdeki yerini aldı.

IV. Nesil III. Nesil reaktörlerin halefi olarak tasarlanan nükleer reaktör tasarımlarıdır. Birinci nesil sistemlerin çoğu kullanımdan kaldırıldığı için dünya çapında faaliyette olan reaktörlerin çoğu ikinci ve 3 nesil sistemlerdir. Generation IV International Forum, IV. nesil reaktörlerin gelişimini koordine eden uluslararası bir organizasyondur. V. Nesil reaktörler tamamen teoriktir ve henüz uygulanabilir olarak görülmemektedir.

<span class="mw-page-title-main">Sıvı florür toryum reaktörü</span>

Sıvı florür toryum reaktörü, bir tür erimiş tuz reaktörüdür. LFTR, yakıt için florür esaslı, erimiş, sıvı tuzlu toryum yakıt çevrimini kullanır.

<span class="mw-page-title-main">Kompozit Malzemeler</span>

Kompozit malzeme, önemli ölçüde farklı fiziksel veya kimyasal özelliklere sahip iki veya daha fazla bileşen malzemeden yapılan ve birleştirildiğinde öncekinden farklı özelliklere sahip olan bir malzeme üreten bir malzeme. Bu kurucu malzemeler, oldukça farklı kimyasal veya fiziksel özelliklere sahiptir ve tek tek elemanlardan farklı özelliklere sahip bir malzeme oluşturmak için birleştirilir. Bitmiş yapı içinde, tek tek elemanlar ayrı ve farklı kalarak kompozitleri, karışımlardan ve katı solüsyonlardan ayırmaktadır.

<span class="mw-page-title-main">Nanokompozit</span>

Nanokompozit, kendini oluşturan fazlardan birinin 100 nanometreden (nm) küçük bir, iki veya üç boyuta sahip olduğu kompozitlerdir. Diğer bir tanımı ise malzemeyi oluşturan farklı fazlar arasında nano ölçekli tekrar mesafelerine sahip yapıların bulunduğu çok fazlı katı kompozitlerdir.

Genellikle polimer malzemeleri tasarlayan, analiz eden ve değiştiren bir mühendislik alanıdır. Polimer mühendisliği, petrokimya endüstrisi, polimerizasyon, polimerlerin yapısı ve karakterizasyonu, polimerlerin özellikleri, polimerlerin birleştirilmesi ve işlenmesi ve ana polimerlerin tanımı, yapı özellik ilişkileri ve uygulamalarının yönlerini kapsar.

Yeşil kompozitler ya da biyokompozitler olarak da adlandırılır; yenilenebilir kaynaklardan veya biyolojik maddelerden kaynaklanan hem takviyelerden hem de polimer matris fazından oluşan farklı türde biyo-kompozit malzemeler olarak tanımlanmaktadır. Yeşil kompozitler, çok çeşitli takviye elemanı ve matris malzemelerin kullanımına uygun, iyi mukavemet ve boşluklu yapılarından dolayı iyi ses yalıtım özelliğine sahip, kolayca işlenebilen ve yeni üretim teknikleri gerektirmeyen, mikro ya da nano seviyede çalışılabilen, geri dönüştürülebilir, yenilenebilir, sürdürülebilir doğa dostu malzemelerdir. Yakın geçmişte kendini dünyaya kısa bir sürede tanıtan kompozit malzemeler uzay-hava sistemleri, otomotiv, spor eşyaları gibi birçok gündelik alanlarda vazgeçilemez hale gelmiştir. Genellikle kompozit malzemeler, çeşitli biçimlerde tasarlanabilir olmalarına karşın çoğunlukla epoksi, polipropilen, polietilen vs. bir polimer matrise cam, karbon, aramid veya ultra yüksek moleküler ağırlıklı polietilen liflerin takviyesiyle meydana gelmektedirler. Kompozit malzeme kullanımı artmasının avantajı olmasının yanında oluşacak malzeme için tüketilen atıklar sorun oluşturmaktadır. Ayrıca kompozit malzemeler iki farklı malzemeden meydana geliyor olması geri dönüşümünü zorlaştırmaktadır.

<span class="mw-page-title-main">Pasif soğutma</span>

Pasif soğutma doğrudan aktif bir bileşen içermeden sadece ısı transfer metodu ile sıcak yüzeyden ısıyı sistemin dışına iletmek ile görevli bileşenlerdir. Özellikle yarı silikon olarak bilinen transistörlerden oluşan işlemci ve entegrelerin yapıları gereği ısınmaları kaçınılmazdır. Bu ısınma sonucu çıkan ısı sistemin verimini düşüren ısının sistemden atılması gerekmektedir.

<span class="mw-page-title-main">Kızılötesi ısıtıcı</span>

Kızılötesi ısıtıcı veya ısı lambası, enerjiyi elektromanyetik radyasyon yoluyla daha soğuk bir nesneye aktaran yüksek sıcaklık yayıcı içeren bir ısıtma cihazıdır. Vericinin sıcaklığına bağlı olarak, kızılötesi radyasyon tepe noktasının dalga boyu 750 nm ila 1 mm arasında değişir. Enerji transferi için ısı yayıcı (ing:emitter) ile soğuk nesne arasında herhangi bir temas veya ortam gerekli değildir. Kızılötesi ısıtıcı, vakum veya atmosferde ısıtabilir.

<span class="mw-page-title-main">Borofen</span>

Borofen, borun kristal bir atomik tek tabakasıdır, yani borun iki boyutlu bir allotropudur ve bor levhası olarak da bilinir. İlk olarak 1990'ların ortalarında teorik olarak tahmin edilen farklı borofen yapıları 2015'te deneysel olarak doğrulandı.