İçeriğe atla

Bohr-Mollerup teoremi

Bohr-Mollerup teoremi,[1][2] Matematiksel analizde adını Danimarkalı matematikçi Harald Bohr ve Johannes Mollerup'tan almıştır.[3]

Bu teorem x > 0 için Gama fonksiyonu'nun, karakterizasyonu'nu tanımlar.

sade fonksiyon ƒ için x > 0 açık aralığında ardı ardına üç özellik

  • ve
  • ve
  • logaritmik konveksdir.

Bu teoremin seçkin açıklaması Artin'in kitabı The Gamma Function'un yeniden basımı bir AMS koleksiyonudur ve Artin tarafından kaleme alınmıştır.

İlk baskı Karmaşık Analiz içindeydi ve Bohr ve Mollerup'un izniyle basılmıştır.

Kanıtı

Teoremin ifadesi

karşılayan tek fonksiyon ile ve ayrıca .için konvekstir.

Kanıtı

yardımıyla, yukarıda kabul edilen özelliklere bağlı olarak kurulan fonksiyon
ve konvekstir ve

Aslında gerçeğinden şunu kurabiliriz.

ve bu sonuçtan hareketle

ifadesi doğal sonucudur bu özellikle tam sayılara uygulanarak aşağıdaki sonuca varabiliriz.

ise

ve eğer yoksa... yani bizim bağıntımız

olmak üzere
tüm değerleri için aşağıdaki ve iki noktayı birleştiren doğrunun eğiminin hesabı olmak üzere monoton olarak arttığı için konveks fonksiyon ile onun doğal öngörüsüden dolayı konveks olduğunu biliyoruz

Böyle bir limit varlığı veya yakınsama gibi çeşitli şeyleri kanıtlamak için ortak bir analiz tekniğidir. Şimdi biz bu fonksiyonu geri çağırıyoruz ve her ikisi monoton artandır. Bu, iki ifade arasında sıkışmış olan fonksiyon son satırından bellidir ve . biz bu özelliği eşitsizlikte kullanırsak devamla:

Son satırı güçlü bir ifadedir. Özelde, bütün değerler için de geçerlidir. nın herhangi bir değeri seçimi için sağ tarafta daha küçük ve aynı şekilde, nın herhangi bir diğer tercihi için sol tarafta daha büyük olmasıdır. Her bir eşitsizlik yalnız bir durum ve bağımsız bir ifade olarak yorumlanabilir bir durumdur. bu nedenle RHS ve LHS'yi farklı -n-değerleri için seçmekte özgürüz. Özellikle, LHS için RHS için seçiminde tutarsak.

Bu son iki ifadeyi birleştirirsek

şimdi olarak alınırsa. sağ yan eşitliğe giderken sol yan eşitsizliğe gider. devamlı sıkıştırılırsa, ifadesinin tek anlamı olabilir,eşitlik 'ya gider. Bu ispat bağlamında 'ya ait belirtilen üç özellik idi. Ayrıca kanıt için belirli bir ifade sağlar Ve ispatın son kritik bölümünde bir dizinin limiti benzersiz olduğu hatırdan çıkarılmamalıdır Bu demektir ki herhangi bir seçim için, sadece bir sayı bulunabilir Burada fonksiyonun tüm özelliklerine sahip başka bir fonksiyon yoktur.

ispat sorusunun teorem varsayımı kalan diğer ucudur herkes için mantıklı burada bulunmaktadır. Problem bizim ilk çift eşitsizliğimizdedir.

için kısıtlama konmuştur. öğleyse, monoton artan yapmak isteniyor, daha sonra eğer söyleniyorsa,olması isteniyorsa oluşturulan tüm kanıt eşitsizliğin çelişmesi üzerinedir ama

dikkat edilmelidir.

ilk olarak gösterilen 'ın bütün değerleri için 'ın buradaki limit tanımlıdır.

Kaynakça

  1. ^ Hazewinkel, Michiel, (Ed.) (2001), "Bohr–Mollerup theorem", Encyclopaedia of Mathematics, Kluwer Academic Publishers, ISBN 978-1556080104 
  2. ^ Eric W. Weisstein, Bohr–Mollerup Theorem (MathWorld)
  3. ^ Mollerup, J., Bohr, H. (1922). Lærebog i Kompleks Analyse vol. III, Copenhagen. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

<span class="mw-page-title-main">Türev alma kuralları</span> Vikimedya liste maddesi

Türev, matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıda temel türev alma kuralları ve bazı fonksiyonların türev kuralları yer almaktadır.

<span class="mw-page-title-main">Ki-kare dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında ki-kare dağılım özellikle çıkarımsal istatistik analizde çok geniş bir pratik kullanım alanı bulmuştur.

<span class="mw-page-title-main">Kısmi türev</span>

Kısmi türev çok değişkenli bir işlevin(fonksiyon), sadece ilgili değişkeni sabit değilken alınan türevdir. Bu tarz türevleri içeren denklemlere kısmi diferansiyel denklem denir.

<span class="mw-page-title-main">Totient</span>

Totient sayılar teorisinde, bir tam sayının o sayıdan daha küçük ve o sayı ile aralarında asal olan sayma sayı sayısını belirten fonksiyondur. Genellikle Euler Totient ya da Euler'in Totienti olarak adlandırılan Totient, İsviçreli matematikçi Leonhard Euler tarafından yaratılmıştır. Totient fonksiyonu, Yunan harflerinden ile simgelendiği için Fi fonksiyonu olarak da anılabilir.

<span class="mw-page-title-main">Gama fonksiyonu</span>

Gama fonksiyonu, matematikte faktöriyel fonksiyonunun karmaşık sayılar ve tam sayı olmayan reel sayılar için genellenmesi olan bir fonksiyondur. Г simgesiyle gösterilir.

<span class="mw-page-title-main">Zeta dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, zeta dağılımı bir ayrık olasılık dağılımıdır. Eğer X s parametresi ile zeta dağılımı gösteren bir bir rassal değişken ise, Xin k tam sayısı değerini almasının olasılığı şu olasılık kütle fonksiyonu ile belirtilir:

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

<span class="mw-page-title-main">Cauchy dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Cauchy-Lorentz dağılımı bir sürekli olasılık dağılımı olup, bu dağılımı ilk ortaya atan Augustin Cauchy ve Hendrik Lorentz anısına adlandırılmıştır. Matematik istatistikçiler genel olarak Cauchy dağılımı adını tercih edip kullanmaktadırlar ama fizikçiler arasında Lorentz dağılımı veya Lorentz(yen) fonksiyon veya Breit-Wigner dağılımı olarak bilinip kullanılmaktadır.

Matematikte Abel testi sonsuz bir serinin yakınsaklığını belirlemek için kullanılan bir yöntemdir. Bu test matematikçi Niels Abel'e ithafen bu şekilde isimlendirilmiştir. Abel testinin farklı iki çeşidi vardır – birisi gerçel sayıların serileriyle kullanılır; diğeri ise karmaşık analizdeki kuvvet serileriyle kullanılır.

Karmaşık analizde kontür integrali veya kontür integrali almak karmaşık düzlemdeki yollar boyunca belli integralleri bulmak için kullanılan bir yöntemdir.

Gauss integrali, Euler–Poisson integrali olarak da bilinir, tüm reel sayılardaki ex2 Gauss fonksiyonunun integralidir. Alman matematik ve fizikçi Carl Friedrich Gauss'dan sonra adlandırlıdı. İntegrali şöyledir:

Kupon toplayıcısının problemi bir olasılık kuramı pratik problemi olarak "bütün kuponları topla ve ödün kazan" tipli yarışmalar için olasılık modeli içerir. Sorulan soru şöyle ifade edilebilir:

Yarışma için n sayıda kupon olduğu kabul edilsin ve kuponların geri koyup tekrar seçme ile toplandığı varsayılsın. Bütün n kuponları toplamak icin t sayıda örneklem deneysel seçiminden daha fazla sayıda seçim yapılması gerekliliğinin olasılığı nedir?"

<span class="mw-page-title-main">Riemann zeta işlevi</span>

Matematikte Riemann zeta işlevi , Alman matematikçi Bernhard Riemann tarafından 1859'da bulunmuş olan ve asal sayıların dağılımıyla olan ilişkisinden ötürü sayı kuramında önemli yeri bulunan seçkin bir işlevdir. İşlev; fizik, olasılık kuramı ve uygulamalı istatistikte de kullanılmaktadır.

<span class="mw-page-title-main">Poligama fonksiyonu</span>

Matematik'te, poligama fonksiyonu' eşitliğin soludur ve türevin kuvvetine m konulduğunda eşitliğin sağ tarafındaki gama fonksiyonu'nun logaritma'sının (m + 1). türevi olarak tanımlanır.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

Matematiksel analizin sayı teorisinde Euler–Mascheroni sabiti matematiksel sabit'tir. Yunan harfi Yunanca: γ (gama) ile gösterilir.

<span class="mw-page-title-main">Beta fonksiyonu</span>

Matematik'te, beta fonksiyonu, Euler integrali'nin ilk türüdür,

Matematik'te, Hurwitz zeta fonksiyonu, adını Adolf Hurwitz'ten almıştır, çoğunlukla zeta fonksiyonu denir. Formel tanımı için kompleks değişken s 'in Re(s)>1 ve q 'nun Re(q)>0 yardımıyla

Özel fonksiyonların önemli bir bölümünü oluşturan hipergeometrik fonksiyonlar matematik, fizik, mühendislik ve olasılıkta karşımıza çıkar.