İçeriğe atla

Bochner-Martinelli formülü

Matematikte, Bochner-Martinelli formülü, Cauchy integral formülünün birden fazla kompleks değişkenli fonksiyonlara yönelik genellemelerinden birisidir. Enzo Martinelli (1938) ve Salomon Bochner (1943) tarafından bağımsız olarak kanıtlanmıştır.

Formülün diferansiyel formlara yönelik genellemesi Bochner–Martinelli-Koppelman formülü olarak bilinmektedir.

Tarihçe

Bochner-Martinelli formülünün yayınlandığı ve kanıtlandığı ilk makale Martinelli'ye aittir.[1] Başka bir makalede ise,[2] Martinelli Hartogs teoreminin kanıtını Bochner-Martinelli formülünü kullanarak vermiştir.

Bochner ise 1943'ün nisan ayında yayınlanması için ibraz ettiği makalesinde [3] yer alan ve yine aynı yılın Eylül ayında güncellediği bir dipnotta Formül (53)'ün ve kanıtı bu formüle dayanan Teorem 5'in Enzo Martinelli tarafından (Martinelli 1943) hemen yakın zamanda yayınlandığını söylemektedir.[4] Yine aynı dipnotta, yazarın (yani Bochner'in) bu sonuçları daha önce 1940/41 kış döneminde Princeton'daki doktora seviyesindeki bir derste sunduğu ve Donald C. May tarafından Haziran 1941'de yazılan An integral formula for analytic functions of k variables with some applications başlıklı doktora tezinde yer aldığı kaydedilmiştir. Ancak, Bochner 1947'de yayınladığı bir makalesindeki dipnotta,[5] daha önce Bochner 1943 makalesindeki dipnotta Martinelli'den önce bu formüle aşina olabileceği hakkındaki iddiasının dayanaksız olduğunu ve bu iddiasını geri çektiğini yazmıştır.

Walter Koppelman son yaptığı yayınında Cauchy-Fantappiè çekirdeği ile alakalı mekanizmanın sadece fonksiyonlar için değil diferansiyel formlar için de uyarlanabileceğini göstermiştir.[6]

Bochner–Martinelli çekirdeği

için, Bochner–Martinelli çekirdeği ω(ζ, z) ikili derecesi (n,n−1) olan ve ζ için aşağıdaki gibi tanımlı bir formdur:

Burada, toplamın terimleri dζj formunu atlar.

kümesi nde parçalı düzgün bir sınıra () sahip olan bir bölge olsun. Diyelim ki f fonksiyonu kümesinin kapanışında sürekli türevlenebilen bir fonksiyondur. O halde, Bochner-Martinelli formülü şunu ifade eder: için

  • Bu formülü veren teoremler aslında formülden daha fazlasını gösterirler. Bu teorem ifadelerinde, formülün sağ tarafı baz alınıp eşitlik bölge içindeki noktalar için yukarıdaki gibi verilir; bölgenin kapanışının dışında kalan noktalar içinse sonuç 0 olarak verilir.
  • f ayrıca holomorf ise, ikinci integral o zaman sıfıra eşittir ve aşağıdaki bağlantı holomorf fonksiyonlar için yazılabilir.
  • Bochner-Martinelli çekirdeği harmoniktir ama için holomorf değildir.

Cauchy çekirdeği

Bochner-Martinelli çekirdeği Cauchy çekirdeğini birden fazla kompleks boyuta taşımaktadır. Gerçekten de alınırsa, o zaman Bochner-Martinelli çekirdeği şu hali alır:

Burada, olduğunu gözlemleyip gerekli sadeleştirmeler yapıldıktan sonra çekirdeğin

olduğu görülür ki bu da Cauchy çekirdeğidir. Sonuç olarak, eğer f bir kompleks değişkenli holomorf fonksiyon ise Bochner-Martinelli formülünün yukarıda verilen özel hali Cauchy integral formülüne dönüşür. Yani,

Bochner-Martinelli-Koppelman çekirdeği

olsun. O zaman, Bochner–Martinelli-Koppelman çekirdeği formları için şu şekilde yazılabilir:[7]

kümesi nde parçalı düzgün bir sınıra () sahip olan bir bölge olsun. Diyelim ki f, bölgesinin kapanışında sürekli türevlenebilen bileşen fonksiyonları olan -formu olsun. O halde, Bochner-Martinelli-Koppelman formülü şunu ifade eder: için

Bu teoremin ifadelerinde, formülün sağ tarafı baz alınıp eşitlik bölge içindeki noktalar için yukarıdaki gibi verilir; bölgenin kapanışının dışında kalan noktalar içinse sonuç 0 olarak verilir.

Notlar

  1. ^ Martinelli 1938
  2. ^ Martinelli 1943
  3. ^ Bochner 1943
  4. ^ Bochner burada Martinelli'nin Martinelli 1943 makalesine açıkça atıfta bulunuyor ama belli ki Martinelli'nin bu formülü kanıtladığı daha önceki makalesinden (Martinelli 1938) haberi yok. Diğer taraftan gözlemlemek lazım ki Martinelli'nin önceki makalesi olan Martinelli 1938, Bochner'in makalesindeki bahsettiği Martinelli 1943 makalesinde açıkça atıf almış durumda.
  5. ^ Bochner 1947 (s.15)
  6. ^ Koppelman 1967
  7. ^ Boas 2010, s. 49a bakınız. Değişik kaynaklarda Hodge operatörü veya diğer değişik gösterimlerle yazılabilir.

Kaynakça

  • Boas, Harold (2005), Topics in Several Complex Variables [Çok karmaşık değişkenli analizde konular] (PDF) (22 Haziran 2010da küçük güncellemeler yapılmıştır).
  • Bochner, Salomon (1943), "Analytic and meromorphic continuation by means of Green's formula" [Green formülü vesilesiyle analitik ve meromorf devamlılık], Annals of Mathematics, Second Series, 44 (4), ss. 652-673, doi:10.2307/1969103, ISSN 0003-486X, JSTOR 1969103, MR 0009206, Zbl 0060.24206 .
  • Bochner, Salomon (1947), "On compact complex manifolds" [Tıkız kompleks manifoldlar üzerine], The Journal of the Indian Mathematical Society, New Series, cilt 11, ss. 1-21, MR 0023919, Zbl 0038.23701 .
  • Koppelman, Walter (1967), "The Cauchy integral for functions of several complex variables" [Birden fazla kompleks değişkenli fonksiyonlar için Cauchy integrali], Bull. Amer. Math. Soc. (İngilizce), 73, ss. 373-377 .

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">İş (fizik)</span>

Fizikte, bir kuvvet bir cisim üzerine etki ettiğinde ve kuvvetin uygulama yönünde konum değişikliği olduğunda iş yaptığı söylenir. Örneğin, bir valizi yerden kaldırdığınızda, valiz üzerine yapılan iş kaldırıldığı yükseklik süresince ağırlığını kaldırmak için aldığı kuvvettir.

Kapasite veya diğer adıyla sığa, bir cismin elektrik yükü depo etme yeteneğidir. Elektrikle yüklenebilen her cisim sığa barındırmaktadır. Enerji depolama aracının en yaygın formu paralel levhalı sığaçlardır. Paralel levhalı sığaçta, sığa iletken levhanın yüzey alanıyla doğru orantılıdır ve levhalar arasındaki uzaklığın ayrımıyla da ters orantılıdır. Eğer levhaların yükleri +q ve –q ise ve V levhalar arasındaki voltajı veriyorsa, sığa C şu şekildedir;

<span class="mw-page-title-main">Karmaşık analiz</span>

Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.

<span class="mw-page-title-main">Morera teoremi</span> Matematik terimi

Matematiğin bir dalı olan karmaşık analizde, Giacinto Morera'nın ardından adlandırılan Morera teoremi, bir fonksiyonun holomorf olduğunu kanıtlamak için kullanılan temel bir sonuçtur. İtalyan matematikçi Giacinto Morera'nın adını taşımaktadır.

<span class="mw-page-title-main">Cauchy integral formülü</span>

Matematikte, Augustin Louis Cauchy'nin adıyla adlandırılan Cauchy integral formülü karmaşık analizde merkezi bir ifadedir. Bir disk üzerinde tanımlanmış holomorf bir fonksiyonun tamamen, fonksiyonun disk sınırındaki değerleri tarafından belirlendiğini ifade eder. Ayrıca, holomorf bir fonksiyonun tüm türevleri için formül elde etmekte de kullanılabilir. Cauchy formülünün analitik önemi karmaşık analizde "türev alma integral almaya denktir" ifade etmesidir: Bu yüzden karmaşık türevlilik, integral alma gibi, gerçel analizde olmayan düzgün limitler altında iyi davranma özelliğine sahiptir.

Matematiğin bir dalı olan karmaşık analizde Augustin Louis Cauchy ve Bernhard Riemann'a atfen Cauchy-Riemann denklemleri olarak adlandıran denklemler, türevlenebilir bir fonksiyonun açık bir kümede holomorf fonksiyon olması için gerekli ve yeterli şartları sağlayan kısmi diferansiyel denklemlerdir. Bu denklemler sistemi ilk defa Jean le Rond d'Alembert'in 1752 yılındaki çalışmasında ortaya çıkmıştır. Daha sonra, 1777 yılındaki çalışmasıyla Leonhard Euler bu sistemi analitik fonksiyonlarla ilişkilendirmiştir. Cauchy ise bu sistemi 1814'teki çalışmasındaki fonksiyonlar teorisinde kullanmıştır. Riemann'ın fonksiyonlar teorisi üzerine olan doktora tezinin tarihi ise 1851'dir.

Matematiğin bir alt dalı olan karmaşık analizde, Liouville teoremi tam fonksiyonların sınırlılığıyla ilgili temel bir teoremdir.

<span class="mw-page-title-main">Çizgi integrali</span>

Matematikte bir çizgi integrali, integrali alınan fonksiyonun bir eğri boyunca değerlendirildiği integraldir. Çeşitli farklı çizgi integralleri kullanılmaktadır. Kapalı eğrinin kullanıldığı durumlarda integrale kontür integrali denildiği de olmaktadır.

Matematikte, Hartogs teoremi, çok değişkenli karmaşık analizde birden fazla karmaşık değişkene sahip holomorf fonksiyonların analitik devamlarıyla ilgili olan ve karmaşık analizin bir değişkenli fonksiyonlar teorisinde varolmayan bir sonuçtur.

Açısal hız, bir objenin birim zamandaki açısal olarak yer değiştirme miktarına verilen isimdir. Açısal hız vektörel olup bir cismin bir eksen üzerindeki dönüş yönünü ve hızını verir. Açısal hızın SI birimi radyan/saniyedir, ancak başka birimlerde de ölçülebilir. Açısal hız genellikle omega sembolü ile gösterilir. Açısal hızın yönü genellikle dönüş düzlemine diktir ve sağ el kuralı ile bulunabilir.

<span class="mw-page-title-main">Riemann zeta işlevi</span>

Matematikte Riemann zeta işlevi , Alman matematikçi Bernhard Riemann tarafından 1859'da bulunmuş olan ve asal sayıların dağılımıyla olan ilişkisinden ötürü sayı kuramında önemli yeri bulunan seçkin bir işlevdir. İşlev; fizik, olasılık kuramı ve uygulamalı istatistikte de kullanılmaktadır.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

Matematik'te, Hurwitz zeta fonksiyonu, adını Adolf Hurwitz'ten almıştır, çoğunlukla zeta fonksiyonu denir. Formel tanımı için kompleks değişken s 'in Re(s)>1 ve q 'nun Re(q)>0 yardımıyla

Matematiğin bir alt dalı olan karmaşık analizde Hurwitz teoremi, matematikçi Adolf Hurwitz'in ispatladığı ve bu yüzden onun ismini almış önemli bir sonuçtur. Genel bir şekilde ifade etmek gerekirse, Hurwitz teoremi karmaşık düzlemdeki bir bölge üzerinde tanımlı bir holomorf fonksiyonlar dizisinin sıfırları ile bu dizinin limiti olan fonksiyonun sıfırlarını ilişkilendirir.

Sözde dışbükey bölgeler, matematikte karmaşık analizin ve çok değişkenli karmaşık analizin merkezinde yer alan holomorf fonksiyonların doğal tanım kümeleridir.

Bateman dönüşümü, matematiğin kısmi diferansiyel denklemler başlığında, üç karmaşık değişkenli holomorf bir fonksiyonunun çizgi integrali kullanılarak, dalga denkleminin üç ve Laplace denkleminin dört boyutta çözülmesi için bir yöntemdir. Adını, bu konudaki ilk yayını yapan İngiliz matematikçi Harry Bateman'den almıştır.

Möbius fonksiyonu , 1832 yılında Alman matematikçi August Ferdinand Möbius tarafından ortaya atılan çarpımsal bir fonksiyondur. Temel ve analitik sayılar teorisi'nde çoğunlukla kullanılan fonksiyon, genellikle Möbius inversiyon formülü'nün bir parçası olarak görülür. Gian-Carlo Rota'nın 1960'lı yıllardaki çalışmaları sonucunda ile gösterilen Möbius fonksiyonunun genellemeleri kombinatoriğe tanıtılmıştır.

Matematiğin bir alanı olan çok değişkenli kompleks analizde, Bergman çekirdeği, karesi integrallenebilir holomorf fonksiyonlardan oluşan Hilbert uzayının doğuran çekirdeğidir. Stefan Bergman'ın ardından isimlendirilmiştir.

Matematikte, karmaşık koordinat uzayı de ya da bu uzayın altkümeleri üzerinde tanımlı ve karmaşık değer alan fonksiyonların teorisine; yani, birden fazla karmaşık değişkenli fonksiyonların teorisine çok değişkenli karmaşık analiz denir.

Matematiğin bir alt dalı olan çok değişkenli karmaşık analizde Bergman-Weil formülü, çok değişkenli holomorf fonksiyonların integral temsillerinden biridir. Bergman-Weil formülü aynı zamanda Cauchy integral formülünü birde fazla karmaşık boyuta genelleştirir. Stefan Bergman ve André Weil tarafından literatüre sokulmuştur.