İçeriğe atla

Blum Blum Shub

Blum Blum Shub, (BBS) Lenore Blum, Manuel Blum ve Michael Shub tarafından 1986 yılında önerilen bir yalancı rastgele sayı üretme algoritması. Algoritma şu şekilde gerçekleşir:

p ve q rastgele iki büyük asal ve s de herhangi bir sayı olarak seçilsin. p≠q

p≡3 mod 4 ve q≡3 mod 4 olacak şekilde;

N=p*q hesaplanır.

Rastgele sayılar:

xn=xn-12 mod N denklemiyle birçok rastgele sayı bulunur.

Burada ilk değer olan x0 s yardımıyla bulunur:

x0=s2 mod N şeklinde gerçekleştirilir.

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Asal sayı</span> sadece iki pozitif tam sayı böleni olan doğal sayılardır

Bir asal sayı, yalnızca 1'den büyük olup kendisinden küçük iki doğal sayının çarpımı olarak ifade edilemeyen bir doğal sayıdır. 1'den büyük ve asal olmayan doğal sayılara bileşik sayı adı verilir. Örneğin, 5 bir asal sayıdır çünkü onu bir çarpım olarak ifade etmenin mümkün olan yolları, 1 × 5 veya 5 × 1, yalnızca 5 sayısını içermektedir. Ancak, 4 bir bileşik sayıdır çünkü bu, her iki sayının da 4'ten küçük olduğu bir çarpım şeklindedir. Asal sayılar, aritmetiğin temel teoreminden ötürü sayı teorisi alanında merkezi öneme sahiptir: 1'den büyük her doğal sayı, ya bir asal sayıdır ya da asal sayıların çarpımı olarak, sıralamalarından bağımsız bir şekilde, benzersiz olarak çarpanlarına ayrılabilir.

<span class="mw-page-title-main">Rasyonel sayılar</span>

Rasyonel sayılar, iki tam sayı arasındaki oranı temsil eden, bir pay p ve sıfırdan farklı bir payda q olmak üzere, bir bölme işlemi veya kesir formunda ifade edilebilen sayıları tanımlar. Örneğin, rasyonel bir sayı olarak kabul edilir, bu kapsamda her tam sayı da rasyonel sayılar kategorisindedir. Rasyonel sayılar kümesi, çoğunlukla kalın harf biçimindeki Q veya karatahta vurgusu kullanılarak şeklinde ifade edilir.

RSA, güvenliği tam sayıları çarpanlarına ayırmanın algoritmik zorluğuna dayanan bir tür açık anahtarlı şifreleme yöntemidir. 1978’de Ron Rivest, Adi Shamir ve Leonard Adleman tarafından bulunmuştur. Bir RSA kullanıcısı iki büyük asal sayının çarpımını üretir ve seçtiği diğer bir değerle birlikte ortak anahtar olarak ilan eder. Seçilen asal çarpanları ise saklar. Ortak anahtarı kullanan biri herhangi bir mesajı şifreleyebilir, ancak şu anki yöntemlerle eğer ortak anahtar yeterince büyükse sadece asal çarpanları bilen kişi bu mesajı çözebilir. RSA şifrelemeyi kırmanın çarpanlara ayırma problemini kırmak kadar zor olup olmadığı hala kesinleşmemiş bir problemdir.

<span class="mw-page-title-main">Totient</span>

Totient sayılar teorisinde, bir tam sayının o sayıdan daha küçük ve o sayı ile aralarında asal olan sayma sayı sayısını belirten fonksiyondur. Genellikle Euler Totient ya da Euler'in Totienti olarak adlandırılan Totient, İsviçreli matematikçi Leonhard Euler tarafından yaratılmıştır. Totient fonksiyonu, Yunan harflerinden ile simgelendiği için Fi fonksiyonu olarak da anılabilir.

Ortalama veya merkezsel konum ölçüleri, istatistik bilim dalında ve veri analizinde kullanılan bir veri dizisinin orta konumunu, tek bir sayı ile ifade eden betimsel istatistik ölçüsüdür. Günlük hayatta ortalama dendiğinde genellikle kast edilen aritmetik ortalama olmakla beraber bu ölçünün çok belirli bazı dezavantajları söz konusudur. Bu yüzden matematik ve istatistikte, bir anakütle veya örneklem veri dizisi değerlerini temsil eden tek bir orta değer veya beklenen değer, olarak medyan (ortanca), mod (tepedeğer), geometrik ortalama, harmonik ortalama vb adlari verilen birçok değişik merkezsel konum ölçüleri geliştirilmiş ve pratikte kullanılmaktadır.

Bir asal kök modülü n sayılar teorisindeki modüler aritmetikten bir kavramdır. Eğer olan bir tam sayı ise, n formuna göre aralarında asal sayılar mod n'e göre çarpılarak, bir grup oluşturacak şekilde yapılan işlem, veya olarak gösterilir. Bir asal sayı için ve ise, bu grup ancak ve ancak veya 'ya denktir. Bu döngüsel grubun bir üreteci asal kök modülü n veya 'in bir asal elemanı'dır şeklinde tanımlanır.

Döngüsel artıklık denetimi, çoğunlukla sayısal şebekelerde ve depolama cihazlarında kullanılan ve ham veride yapılan hatalı değişimleri algılayan, uygulaması kolay ve güvenliği güçlü bir hata bulma yöntemidir.

<span class="mw-page-title-main">Dijital İmza Algoritması</span>

Dijital İmza Algoritması dijital imza için bir FIPS standardıdır. Ağustos 1991'de National Institute of Standards and Technology (NIST) tarafından tasarlanmıştır. Dijital imza algoritması, ElGamal İmza Algoritması'nın bir varyantıdır.

Rabin şifreleme sistemi, Rabin kriptoloji veya Rabin kriptosistemi, güvenliği RSA'daki gibi tam sayı çarpanlarına ayırmanın zorluğu üzerine kurgulanmış olan asimetrik bir kriptografik tekniktir. Bununla birlikte, Rabin kriptosisteminin avantajı, saldırgan tam sayıları verimli bir şekilde çarpanlarına ayıramadığı sürece, seçilmiş bir düz metin saldırısına karşı hesaplama açısından güvenli olduğu matematiksel olarak kanıtlanmıştır, oysa RSA için bilinen böyle bir kanıt yoktur. Rabin fonksiyonunun her çıktısının dört olası girdiden herhangi biri tarafından üretilebilmesi dezavantajı; her çıktı bir şifreli metinse, olası dört girdiden hangisinin gerçek düz metin olduğunu belirlemek için şifre çözmede ekstra karmaşıklık gerekir.

Paillier şifrelemesi , 1999’da Pascal Paillier tarafından geliştirilen olasılıksal açık anahtarlı şifreleme yöntemidir. n’inci kök sınıflarını hesaplamanın zorluğunu kullanan Paillier şifreleme sistemi, kararsal bileşik kök sınıfı varsayımı üzerine kurulmuştur. Sistem, toplama işlemine göre homomorfik özellik gösterir; yani sadece açık anahtarı, ve ’nin şifrelemesini kullanarak ’nin şifrelenmiş hâli hesaplanabilir.

Blum–Goldwasser Kriptosistem veya Blum-Goldwasser şifreleme sistemidir. 1984 yılında Manuel Blum ve Şafi Goldwasser tarafından önerilen bir asimetrik anahtar şifreleme algoritmasıdır. Bulum-Goldwasser bilinen en verimli kripto sistemlerden biridir. RSA ile hız ve mesaj genişlemesi açısından kıyaslanabilir. Bu şifreleme algoritmasında rastgele sayı üretmek için Blum Blum Shub rastgele sayı üretme algoritması kullanılır. Büyük sayıların asal çarpanlarına ayrılma probleminin çözülemezliği kabulüne dayanan bir şifreleme algoritmasıdır.

Goldwasser–Micali (GM) kriptosistemi 1982 yılında Shafi Goldwasser ve Silvio Micali tarafından geliştirilmiş bir asimetrik anahtar şifreleme algoritmasıdır. GM standart kriptografik varsayımlar altında güvenliği kanıtlanmış ilk probabilistik açık anahtar şifreleme yöntemidir. Bununla birlikte başlangıç düz metinden yüzlerce kez daha geniş olan şifreli metinler olduğundan verimli bir kriptosistem değildir. Kriptosistemin güvenlik özelliğini kanıtlamak için Shafi Goldwasser ve Silvio Micali anlamsal güvenliğin geniş alanda kullanılan bir tanımını önerdiler.

<span class="mw-page-title-main">Diffie-Hellman anahtar değişimi</span> dünyanın enyuksek dagı

Diffie-Hellman anahtar değişimi (D-H), kriptografik anahtarların değişiminde kullanılan özel bir yöntemdir. Bu kriptografi alanında uygulanan ilk pratik anahtar değişimi örneklerinden biridir. Diffie-Hellman anahtar değişimi metodu, güvenilmeyen bir sistem üzerinden iletişim kurmak isteyen karşılıklı iki tarafın ortaklaşa bir anahtar üzerinde karar kılabilmesine olanak sağlar. Böylece, iki tarafın da karar kıldığı bir simetrik anahtar, güvenli olmayan sistem üzerinden iletişimi şifrelemek için kullanılabilir. Diffie-Hellman protokolünde amaç, iletişim kurmak isteyen iki taraf arasındaki anahtar değişim prosedürünü, anahtarın kötü tarafların eline geçmediğine emin olacak şekilde güvenli bir şekilde gerçekleştirmektir. Bu işlem bir defa yapıldığında ve taraflar bir anahtar üzerinde ortaklaştığında her iki taraf da kendi mesajını paylaşılan anahtarla şifreleyebilir, böylece taraflar arasındaki iletişim güvenli bir şekilde sağlanmış olur.

Okamoto–Uchiyama kriptosistemi, 1998'de T. Okamoto ve S. Uchiyama tarafından bulundu. Sistem kümesinde çalışır, n p2q ya eşittir ve p ve q büyük asal sayılardır.

Merkle-Hellman kripto sistemi, 1978 yılında Martin Hellman ve Ralph Merkle tarafından geliştirilen ilk açık anahtarlı kriptosistemlerden biridir. RSA'dan daha hızlı gerçekleştirilebilmesine rağmen Adi Shamir tarafından 1982'de güvensiz olduğu gösterilmiştir.

<span class="mw-page-title-main">Kübik spline</span>

Diğer interpolasyon yöntemleri ile aynı olan amacı, belli bir fonksiyonun ayrık parçalarının (noktalarının) bilgilerini kullanarak, aynı fonksiyonun bilinmeyen başka noktaları için bir veri elde etmektir.

Medyan bir anakütle ya da örneklem veri serisini küçükten büyüğe doğru sıraladığımızda, seriyi ortadan ikiye ayıran değere denir. İstatistiğin bir alt dalı olan betimsel istatistikde medyan bir merkezsel konum ölçüsü kabul edilir.

Schmidt-Samoa şifreleme, Alman araştırmacı Katja Schmidt-Samoa tarafından 2005’te oluşturulan asimetrik kriptografi yöntemidir. Bu şifrelemenin güvenilirliği Rabin'deki gibi çarpanlara ayırma probleminin zorluğuna dayanmaktadır. Bu algoritma, Rabin'in aksine şifreleme hızı pahasına, şifre çözmede belirsizlik oluşturmamaktadır.

Kriptografide Eliptik Eğri Dijital İmza Algoritması (ECDSA), eliptik eğri şifrelemesi kullanan birçok çeşit Dijital İmza Algoritması (DSA) sunar.

<span class="mw-page-title-main">Newton metodu</span>

Sayısal analizde, Newton-Raphson yöntemi olarak da bilinen ve adını Isaac Newton ve Joseph Raphson'dan alan Newton metodu, gerçel değerli bir fonksiyonun köklerine art arda daha iyi yaklaşımlar üreten bir kök bulma algoritmasıdır. En temel versiyonu, tek bir gerçek değişkenli x için tanımlı olan f fonksiyonu, fonksiyonun türevi f ′ ve f 'in bir kökü için bir x0 başlangıç tahmini ile başlar. Fonksiyon yeterli ön kabulleri karşılıyorsa ve ilk tahmin yakınsa, o zaman