İçeriğe atla

Blum-Goldwasser şifreleme sistemi

Blum–Goldwasser Kriptosistem veya Blum-Goldwasser şifreleme sistemidir. 1984 yılında Manuel Blum ve Şafi Goldwasser tarafından önerilen bir asimetrik anahtar şifreleme algoritmasıdır. Bulum-Goldwasser bilinen en verimli kripto sistemlerden biridir. RSA ile hız ve mesaj genişlemesi açısından kıyaslanabilir. Bu şifreleme algoritmasında rastgele sayı üretmek için Blum Blum Shub rastgele sayı üretme algoritması kullanılır. Büyük sayıların asal çarpanlarına ayrılma probleminin çözülemezliği kabulüne dayanan bir şifreleme algoritmasıdır.

Anahtar Üretimi

1- p ve q birbirinden farklı rastgele iki büyük asal sayı sayılar.

   p≡3 mod 4
   q≡3 mod 4 olmalı.

2- N=p*q

  Gizli anahtar= p, q
  Açık anahtar= N

Şifreleme

1- m şifrelenecek metin ve L bitlik bir veri olsun.(m0, m1, m2 ... mL-1)

2- 1<r<N olacak şekilde bir r seçilmelidir.

  x0=r2 (mod N) hesaplanır.

3- i=0 ve i=L olduğu sürece aşağıdaki işlemler yapılır.

  xi 'nin lsb (en az anlamlı biti) bitini bi olarak alınır.
  i=i+1
  xi=(xi-1)2 mod N

4- c=m⊕b, y=x02L mod N
Karşı tarafa (c,y) gönderilir.

Deşifreleme

Karşı tarafın şifreli metni çözmesi için elinde olanlar: (c0, c1, c2 ... cL-1) ve y. Deşifreleme:

1- rp=y((p+1)/4)2 mod p

  rq=y((q+1)/4)2 mod q

2- x0=(q(q−1 mod p)rp+ p(p−1 mod q)rq) mod N

3- i=0 ve i=L olduğu sürece aşağıdaki işlemler yapılır.

  xi 'nin lsb (en az anlamlı biti) bitini bi olarak alınır.
  i=i+1
  xi=(xi-1)2 mod N

4- m=c⊕b hesaplanır ve deşifrelenmiş metin bulunmuş olunur.

Kaynakça

  1. M. Blum, S. Goldwasser, "An Efficient Probabilistic Public Key Encryption Scheme which Hides All Partial Information", Proceedings of Advances in Cryptology - CRYPTO '84, pp. 289–299, Springer Verlag, 1985.
  2. Menezes, Alfred; van Oorschot, Paul C.; and Vanstone, Scott A. Handbook of Applied Cryptography. CRC Press, Ekim 1996. 0-8493-8523-7

Dış bağlantılar

İlgili Araştırma Makaleleri

RSA, güvenliği tam sayıları çarpanlarına ayırmanın algoritmik zorluğuna dayanan bir tür açık anahtarlı şifreleme yöntemidir. 1978’de Ron Rivest, Adi Shamir ve Leonard Adleman tarafından bulunmuştur. Bir RSA kullanıcısı iki büyük asal sayının çarpımını üretir ve seçtiği diğer bir değerle birlikte ortak anahtar olarak ilan eder. Seçilen asal çarpanları ise saklar. Ortak anahtarı kullanan biri herhangi bir mesajı şifreleyebilir, ancak şu anki yöntemlerle eğer ortak anahtar yeterince büyükse sadece asal çarpanları bilen kişi bu mesajı çözebilir. RSA şifrelemeyi kırmanın çarpanlara ayırma problemini kırmak kadar zor olup olmadığı hala kesinleşmemiş bir problemdir.

DrCrypt şifreleme algoritması, temel XOR(Özel Veya) işlemine dayanır. DrCrypt, hızlı ve güvenilir olmak üzere geliştirilmiştir. 1 adet 2048 elemandan oluşan "Bilgi Gölgeleyici" sabitler dizisine sahiptir. İçeriği tahmin edilmesi yüksek bilgilerin açıklarını kapatmak ve bu sisteme fazladan güvenlik getirmek için eklenmiştir.
DrCrypt, kullanıcının belirttiği şifreden 32 adet sabit şifreleme anahtarı ve her bilgiye sırasına özel ve benzersiz(teoride) bir "Uzunluk Damgası" atar. Sabit dizi elemanları("Bilgi Gölgeleyiciler") bu damganın oluşturulmasında kullanılır.
DrCrypt algoritmasında şifreleme ve çözme işlemleri aynı yolla yapılır. Şifreleme işlemi için önce bilgi "Uzunluk Damgası" ile XOR(Özel Veya) işlemine sokulur. Daha sonra sırası gelen şifreleme anahtarı("32'li ") ile XOR(Özel Veya) işlemine sokulur.

ElGamal şifrelemesi, Diffie-Hellman anahtar alış-verişi'ne dayanan bir asimetrik şifreleme algoritması olup Taher Elgamal tarafından 1984 yılında önerilmiştir.

<span class="mw-page-title-main">Dijital İmza Algoritması</span>

Dijital İmza Algoritması dijital imza için bir FIPS standardıdır. Ağustos 1991'de National Institute of Standards and Technology (NIST) tarafından tasarlanmıştır. Dijital imza algoritması, ElGamal İmza Algoritması'nın bir varyantıdır.

ElGamal imza şeması Ayrık Logaritmanın hesaplanmasının zorluğuna dayanan bir dijital imzadır. Tahir el-Cemal tarafından 1984 yılında bulunmuştur. Açık anahtarlı kriptosistemi ve imza şeması ayrık logaritmaya dayanmaktadır.

Rabin şifreleme sistemi, Rabin kriptoloji veya Rabin kriptosistemi, güvenliği RSA'daki gibi tam sayı çarpanlarına ayırmanın zorluğu üzerine kurgulanmış olan asimetrik bir kriptografik tekniktir. Bununla birlikte, Rabin kriptosisteminin avantajı, saldırgan tam sayıları verimli bir şekilde çarpanlarına ayıramadığı sürece, seçilmiş bir düz metin saldırısına karşı hesaplama açısından güvenli olduğu matematiksel olarak kanıtlanmıştır, oysa RSA için bilinen böyle bir kanıt yoktur. Rabin fonksiyonunun her çıktısının dört olası girdiden herhangi biri tarafından üretilebilmesi dezavantajı; her çıktı bir şifreli metinse, olası dört girdiden hangisinin gerçek düz metin olduğunu belirlemek için şifre çözmede ekstra karmaşıklık gerekir.

Paillier şifrelemesi , 1999’da Pascal Paillier tarafından geliştirilen olasılıksal açık anahtarlı şifreleme yöntemidir. n’inci kök sınıflarını hesaplamanın zorluğunu kullanan Paillier şifreleme sistemi, kararsal bileşik kök sınıfı varsayımı üzerine kurulmuştur. Sistem, toplama işlemine göre homomorfik özellik gösterir; yani sadece açık anahtarı, ve ’nin şifrelemesini kullanarak ’nin şifrelenmiş hâli hesaplanabilir.

Kriptografide blok şifreleme, blok olarak adlandırılmış sabit uzunluktaki bit grupları üzerine simetrik anahtar ile belirlenmiş bir deterministik algoritmanın uygulanmasıdır. Blok şifreleme birçok kriptografik protokol tasarımının önemli temel bileşenlerindendir ve büyük boyutlu verilerin şifrelemesinde yaygın biçimde kullanılmaktadır.

Probabilistik kriptosistem şifreleme algoritması içinde rastgeleselliğin kullanımıdır böylece aynı mesaj birçok kez şifrelendiğinde genel olarak farklı şifreli metinler üretecektir.

Blum Blum Shub, (BBS) Lenore Blum, Manuel Blum ve Michael Shub tarafından 1986 yılında önerilen bir yalancı rastgele sayı üretme algoritması. Algoritma şu şekilde gerçekleşir:

Goldwasser–Micali (GM) kriptosistemi 1982 yılında Shafi Goldwasser ve Silvio Micali tarafından geliştirilmiş bir asimetrik anahtar şifreleme algoritmasıdır. GM standart kriptografik varsayımlar altında güvenliği kanıtlanmış ilk probabilistik açık anahtar şifreleme yöntemidir. Bununla birlikte başlangıç düz metinden yüzlerce kez daha geniş olan şifreli metinler olduğundan verimli bir kriptosistem değildir. Kriptosistemin güvenlik özelliğini kanıtlamak için Shafi Goldwasser ve Silvio Micali anlamsal güvenliğin geniş alanda kullanılan bir tanımını önerdiler.

<span class="mw-page-title-main">Uluslararası Veri Şifreleme Algoritması</span>

Uluslararası Veri Şifreleme Algoritması (IDEA), 1991 yılında Xuejia Lai ve James Massey tarafından tasarlanmış bir blok şifreleme algoritmasıdır. Bilinen en güçlü algoritmalardandır.

<span class="mw-page-title-main">Diffie-Hellman anahtar değişimi</span> dünyanın enyuksek dagı

Diffie-Hellman anahtar değişimi (D-H), kriptografik anahtarların değişiminde kullanılan özel bir yöntemdir. Bu kriptografi alanında uygulanan ilk pratik anahtar değişimi örneklerinden biridir. Diffie-Hellman anahtar değişimi metodu, güvenilmeyen bir sistem üzerinden iletişim kurmak isteyen karşılıklı iki tarafın ortaklaşa bir anahtar üzerinde karar kılabilmesine olanak sağlar. Böylece, iki tarafın da karar kıldığı bir simetrik anahtar, güvenli olmayan sistem üzerinden iletişimi şifrelemek için kullanılabilir. Diffie-Hellman protokolünde amaç, iletişim kurmak isteyen iki taraf arasındaki anahtar değişim prosedürünü, anahtarın kötü tarafların eline geçmediğine emin olacak şekilde güvenli bir şekilde gerçekleştirmektir. Bu işlem bir defa yapıldığında ve taraflar bir anahtar üzerinde ortaklaştığında her iki taraf da kendi mesajını paylaşılan anahtarla şifreleyebilir, böylece taraflar arasındaki iletişim güvenli bir şekilde sağlanmış olur.

Okamoto–Uchiyama kriptosistemi, 1998'de T. Okamoto ve S. Uchiyama tarafından bulundu. Sistem kümesinde çalışır, n p2q ya eşittir ve p ve q büyük asal sayılardır.

Kriptografide Schnorr imzası, Schnorr imza algoritması tarafından üretilen dijital imzalamadır. Güvenliği, ayrık logaritma problemlerinin çözülemezliğine dayanır. Kısa imzalar oluşturur ve verimlidir. Rastgele oracle modelde en basit güvenliği kanıtlanmış dijital imzalama modeli olarak düşünüldü. 2008'de geçerliliğini yitiren U.S. Patent 4,995,082 tarafından lisanslanmıştır.

Merkle-Hellman kripto sistemi, 1978 yılında Martin Hellman ve Ralph Merkle tarafından geliştirilen ilk açık anahtarlı kriptosistemlerden biridir. RSA'dan daha hızlı gerçekleştirilebilmesine rağmen Adi Shamir tarafından 1982'de güvensiz olduğu gösterilmiştir.

<span class="mw-page-title-main">Eliptik eğri kriptografisi</span>

Eliptik Eğri Kriptolojisi, sonlu cisimler üzerindeki eliptik eğrilerin cebirsel topolojisine dayanan bir açık anahtar şifrelemesidir. Eliptik Eğri Kriptolojisi, diğer şifrelemeler göre daha küçük anahtar boyuna ihtiyaç duyar.

Schmidt-Samoa şifreleme, Alman araştırmacı Katja Schmidt-Samoa tarafından 2005’te oluşturulan asimetrik kriptografi yöntemidir. Bu şifrelemenin güvenilirliği Rabin'deki gibi çarpanlara ayırma probleminin zorluğuna dayanmaktadır. Bu algoritma, Rabin'in aksine şifreleme hızı pahasına, şifre çözmede belirsizlik oluşturmamaktadır.

Kriptografide Eliptik Eğri Dijital İmza Algoritması (ECDSA), eliptik eğri şifrelemesi kullanan birçok çeşit Dijital İmza Algoritması (DSA) sunar.

Benaloh kriptosistemi 1994 yılında Josh (Cohen) Benaloh tarafından oluşturulan Goldwasser-Micali şifreleme sisteminin bir genişletilmesidir. Goldwasser-Micali'de bitler tek tek şifrelenirken, Benaloh Kriptosisteminde veri blokları grup olarak şifrelenmektedir. Orijinal makaledeki küçük bir hata Laurent Fousse et al. 'da düzeltilmiştir.