
Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

Olasılık kuramı ve istatistikte, beta dağılımı, [0,1] aralığında iki tane pozitif şekil parametresi ile ifade edilmiş bir sürekli olasılık dağılımları ailesidir. Çok değişkenli genellemesi Dirichlet dağılımıdır.

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre
olur.
Bessel fonksiyonları ilk önce Daniel Bernoulli tarafından tanımlanmış ve Friedrich Bessel tarafından genelleştirilmiş
Matematiksel çözümlemede Cesàro toplamı bir sonsuz diziye toplam değeri atamanın farklı bir yoludur. Bir dizi A toplamına yakınsıyorsa bu dizinin Cesàro toplamı da A olur. Cesàro toplamı, yakınsamayan dizilere de değer atayabilmektedir. Ne var ki, artı sonsuz değerine yönelen bir dizi hiçbir koşulda sonlu bir toplam değerine sahip olamayacaktır.

Laguerre polinomları, matematikte adını Edmond Laguerre'den almıştır. Kanonik (benzer) adlandırma Laguerre denklemi'dir:

Fraunhofer kırınımı ya da uzak-alan kırınımı dalganın uzak bölgelerde yayıldığı durumlarda uygulanan bir Kirchhoff-Fresnel kırınımı yaklaşımıdır.
Matematikte, harmonik analiz alanında, kesirli Fourier dönüşümü (FRFT) Fourier dönüşümüne genelleştirilecek doğrusal dönüşümlerin bir ailesidir. Bu nedenle, -zaman ve frekans- arasında bir ara etki alanı için bir işlev dönüştürebilir - Fourier dönüşünde n'in bir tam sayı olması gerekmez n'inci kuvvet dönüşümü olarak da düşünülebilir. Onun uygulamaları faz geri alma ve örüntü tanıma için,filtre tasarımı ve sinyal analizi arasında değişir.
Matematikte, a Neumann polinomali,Carl Neumann tarafından özel durum
için sunulan, Bessel fonksiyonu terimleri içerisinde fonksiyonların 1/z açılımında kullanılan bir polinomdur.
Fizikte Planck yükü, Planck birimleri olarak bilinen doğal birimler sisteminde elektriksel yük birimidir ve boyutsuz fiziksel sabit olarak tanımlanır.
Kesirli analiz, matematiksel analiz'in bir koludur. Kesirli analiz, D = d/dx ile gösterilen türev işlemcisi'nin ve J ile gösterilen integrasyon işlemcisi'nin kuvvetlerinin reel sayı veya karmaşık sayı değerler olabilme olanaklarını inceler.
Askey-Gasper eşitsizliği, Richard Askey ile George Gasper tarafından 1976'da ispatlanan, bir Jacobi polinomu eşitsizliğidir. Bieberbach varsayımının kanıtlanmasında kullanılmıştır.
Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.
Modern kuantum (nicem) mekaniğinden önce gelen eski kuantum (nicem) kuramı, 1900 ile 1925 yılları arasında elde edilen sonuçların birikimidir. Bu kuramın, klasik mekaniğin ilk doğrulamaları olduğunu günümüzde anladığımız bu kuram, ilk zamanlar tamamlanmış veya istikrarlı değildi. Bohr modeli çalışmaların odak noktasıydı. Eski kuantum döneminde, Arnold Sommerfield, uzay nicemlenimi olarak anılan açısal momentumun (devinimin) z-bileşkesinde nicemlenim yaparak önemli katkılarda bulunmuştur. Bu katkı, electron yörüngelerinin dairesel yerine eliptik olduğunu ortaya çıkarmıştır ve kuantum çakışıklık kavramını ortaya atmıştır. Bu kuram, electron dönüsü hariç Zeeman etkisini açıklamaktadır.

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.
Fizikte, Kuantum mekaniğinde, eşevreli hal klasik harmonik salıngaca benzeyen kuantum harmonik salıngacının nicel hareketidir. Kuantum dinamiğinin Erwin Schrödinger tarafından Scrödinger denklemlerine çözüm ararken 1926 yılında türetilen ilk örneğidir. Örneğin, eşevre hali parçacığın salınımsal hareketini açıkları. Bu haller, John R. Klauderin ilk makalelerinde alçalma operatörü ve fazla tamamlanmış aile teşkili olarak özvektör adında tanımlanmıştır. Eşevre halleri,[ışığın kuantum kuramında ve diğer bozonik kuantum alanlarında Roy J. Glauber’in 1963 yılındaki çalışmaları tarafından geliştirilmiştir. Salınan alanın eşevre hali, klasik sinüs dalga hareketine benzeyen, devamlı lazer dalgası gibi olan kuantum halidir. Ancak, eşevre hali kavramı kayda değer biçimde genellenmiş ve sinyal sürecini niceleme, görüntü işleme alanlarında matematiksel fizikte ve uygulamalı matematik oldukça geniş ve önemli bir konu olmuştır. Bu hususta, kuantum harmonik salıngacı ile bağlantılı eşevreli haller genel olarak standart eşevreli haller ya da Gauss işlevi halleri olarak anılır.

Katı hal fiziğinde, bir katının elektron kuşak yapısı ; katıdaki bir elektronun sahip olabileceği enerji aralıkları ya da sahip olamayacağı enerji aralıkları olarak tanımlanır. Enerji bant teorisi bu bant ve bant boşluklarını atom veya moleküllerin büyük periyodik kafeslerindeki bir elektron için, izinli kuantum mekaniksel dalga fonksiyonlarını inceleyerek çıkarır. Bant teorisi katıların birçok fiziksel özelliklerini; örneğin elektriksel direnç ve optik soğurum gibi, açıklamak için başarılı bir biçimde kullanılmaktadır ve katı hal cihazları anlamanın temelini oluşturmaktadır.
Nötrino salınımları, üretilen ve belirli bir lepton türü olan bir nötrinonun daha sonradan farklı bir tür olarak ölçülebilmesine denen bir kuantum mekaniği fenomenidir. Uzaya yayılan nötrinoların türleri periyodik olarak değişir.

Doğrudan ve dolaylı bant aralığı yarı iletken fiziğinde iki bant aralığı tiptir. Hem iletim bantındaki minimum enerji durumu, hem değerlik bantındaki maksimum enerji durumu, Brillouin bölgesinde belirli bir kristal momentumu (k-yöney) ile karakterize edilir. K-yöneyleri aynı ise, buna "doğrudan bant aralığı" denir. Eğer farklısa, “dolaylı bant aralığı” denir. Elektronların ve deşiklerin kristal momentumu, hem iletim bandında hem de değerlik bantında aynı ise, bant aralığı "doğrudan bant aralığı" olarak adlandırılır; elektron doğrudan foton yayabilir. Bir "dolaylı bant aralığında", bir foton yayıla bilinmez, zira elektron bir ara durumdan geçmeli ve momentumu kristal kafesine aktarmalıdır. Doğrudan bant aralıklı malzeme örnekleri, InAs, GaAs gibi bazı III-V materyallerini içerir. Dolaylı bant aralıklı malzemeleri Si, Ge içerir. Bazı III-V materyalleri de, örneğin AlSb gibi dolaylı bant aralıklıdır.
Bessel polinomları, matematikteki ortogonal polinomların bir dizisidir. Bessel polinomlarıyla ilgili birbirinden farklı ama birbiriyle yakından ilişkili çok sayıda tanım vardır. Matematikçiler tarafından tercih edilen tanım şu seriyle verilmektedir:
