İçeriğe atla

Blaschke çarpımı

Matematiğin bir alt dalı olan karmaşık analizde Blaschke çarpımı, açık birim dairede bütün sıfırlarının önceden belirli (sonlu bir veya sonsuz bir ) bir karmaşık dizinin elemanlarında olması için oluşturulmuş sınırlı, holomorf bir fonksiyondur.

Blaschke çarpımları 1915 yılında Wilhelm Blaschke tarafından ortaya koyulmuştur.[1] Hardy uzaylarıyla yakından ilişkilidirler.

Tanım

Yukarıdaki verilmiş, elemanlanları, a0, a1, ... olan bir diziye eğer

toplamı yakınsak ise Blaschke koşulunu sağlar denilir. Blaschke koşulunu sağlayan bir dizi verilmiş olsun. O zaman, blaschke çarpımı ise

şeklinde tanımlanır. Burada çarpım terimleri olan ler ise a ≠ 0 koşuluyla

şeklinde tanımlanır. a = 0 olduğunda ise B(0,z) = z alınır.

B(z), yani Blaschke çarpımı, birim daire üzerinde holomorftur ve sadece an üzerinde sıfır değerini almaktadır. Yukarıda verilen yakınsaklık koşulunu sağlayan dizilere Blaschke dizisi denmektedir.

Szegő teoremi

Gábor Szegő'nün bir teoremi ise şunu ifade etmektedir: Eğer ise ve f de her yerde 0'a eşit olan bir fonksiyon değilse (yani 0 fonksiyonu değilse), o zaman f 'nin sıfırları (yani sıfır değerini aldığı noktalar) Blaschke koşulunu sağlar.

Sonlu Blaschke çarpımları

Sonlu Blaschke çarpımlarının birim daire üzerinde holomorf olması şu şekilde anlatılabilir: f birim daire üzerinde holomorf olan, birim dairenin kapanışına (yani kapalı birim daireye) sürekli bir şekilde devam ettirilebilen ve aynı zamanda da bu devamı birim çemberi birim çembere gönderen bir fonksiyon olsun. O zaman, ƒ sonlu bir Blaschke çarpımına eşittir:

Burada ζ birim çember üzerinde bir noktayı, mi ise ƒ'nin ai, |ai| < 1 noktasındaki sıfırının derecesini göstermektedir. Özel olarak, ƒ yukarıdaki gibiyse ve birim çemberin içinde kalan bölgede sıfırı yoksa, o zaman sabit fonksiyondur. Bu özel sonuç, harmonik fonkiyonların maksimum ilkesi log(|ƒ(z)|) fonksiyonuna uygulanarak gösterilebilir.

Ayrıca bakınız

  • Hardy uzayı
  • Weierstrass çarpımı

Notlar

  1. ^ W. Blaschke, Eine Erweiterung des Satzes von Vitali über Folgen analytischer Funktionen Berichte Math.-Phys. Kl., Sächs. Gesell. der Wiss. Leipzig, 67 (1915) sf. 194–200

Kaynakça

İlgili Araştırma Makaleleri

Matematikte cebirin temel teoremi karmaşık değişkenli polinomların köklerinin varlığıyla ilgili temel bir sonuçtur. D'Alembert-Gauss teoremi olarak da anılmaktadır.

<span class="mw-page-title-main">Morera teoremi</span> Matematik terimi

Matematiğin bir dalı olan karmaşık analizde, Giacinto Morera'nın ardından adlandırılan Morera teoremi, bir fonksiyonun holomorf olduğunu kanıtlamak için kullanılan temel bir sonuçtur. İtalyan matematikçi Giacinto Morera'nın adını taşımaktadır.

<span class="mw-page-title-main">Kutup (karmaşık analiz)</span>

Karmaşık analizde kutup ya da doğru bir söylemle bir meromorf fonksiyonun kutbu, 1/zn 'nin z = 0 noktasındaki tekilliği gibi davranan matematiksel bir tekilliktir. Bu özellikle şu anlama gelir: Bir f(z) fonksiyonun z = a noktasındaki kutbu, z noktası a noktasına yaklaştıkça f(z)'yi sonsuza düzgün bir şekilde yaklaştıran noktadır.

<span class="mw-page-title-main">Cauchy integral formülü</span>

Matematikte, Augustin Louis Cauchy'nin adıyla adlandırılan Cauchy integral formülü karmaşık analizde merkezi bir ifadedir. Bir disk üzerinde tanımlanmış holomorf bir fonksiyonun tamamen, fonksiyonun disk sınırındaki değerleri tarafından belirlendiğini ifade eder. Ayrıca, holomorf bir fonksiyonun tüm türevleri için formül elde etmekte de kullanılabilir. Cauchy formülünün analitik önemi karmaşık analizde "türev alma integral almaya denktir" ifade etmesidir: Bu yüzden karmaşık türevlilik, integral alma gibi, gerçel analizde olmayan düzgün limitler altında iyi davranma özelliğine sahiptir.

Matematiğin bir dalı olan karmaşık analizde Augustin Louis Cauchy ve Bernhard Riemann'a atfen Cauchy-Riemann denklemleri olarak adlandıran denklemler, türevlenebilir bir fonksiyonun açık bir kümede holomorf fonksiyon olması için gerekli ve yeterli şartları sağlayan kısmi diferansiyel denklemlerdir. Bu denklemler sistemi ilk defa Jean le Rond d'Alembert'in 1752 yılındaki çalışmasında ortaya çıkmıştır. Daha sonra, 1777 yılındaki çalışmasıyla Leonhard Euler bu sistemi analitik fonksiyonlarla ilişkilendirmiştir. Cauchy ise bu sistemi 1814'teki çalışmasındaki fonksiyonlar teorisinde kullanmıştır. Riemann'ın fonksiyonlar teorisi üzerine olan doktora tezinin tarihi ise 1851'dir.

<span class="mw-page-title-main">Karmaşık düzlem</span>

Matematikte karmaşık düzlem, gerçel eksen ve ona dik olan sanal eksen tarafından oluşturulmuş, karmaşık sayıların geometrik bir gösterimidir. Karmaşık sayının gerçel kısmının x-ekseni boyuncaki yer değiştirmeyle, sanal kısmının ise y-eksenindeki yer değiştirmeyle temsil edildiği değiştirilmiş bir Kartezyen düzlem olarak düşünülebilir.

Matematiğin bir alt dalı olan karmaşık analizde, Liouville teoremi tam fonksiyonların sınırlılığıyla ilgili temel bir teoremdir.

<span class="mw-page-title-main">Laurent serisi</span>

Matematikte karmaşık bir fonksiyonun Laurent serisi bu fonksiyonun negatif dereceli terimler de içeren kuvvet serisi temsilidir. Karmaşık fonksiyonların Taylor serileri açılımının mümkün olmadığı durumlarda bu fonksiyonları açıklamak için de kullanılabilir. Laurent serisi ilk defa 1843'te Pierre Alphonse Laurent tarafından yayınlanmış ve bu matematikçinin adını almıştır. Karl Weierstrass 1841'de bu seriyi bulmuş olabilir ancak o zamanda ilk yayınlayan olamamıştır.

<span class="mw-page-title-main">Çizgi integrali</span>

Matematikte bir çizgi integrali, integrali alınan fonksiyonun bir eğri boyunca değerlendirildiği integraldir. Çeşitli farklı çizgi integralleri kullanılmaktadır. Kapalı eğrinin kullanıldığı durumlarda integrale kontür integrali denildiği de olmaktadır.

Matematiğin bir alt dalı olan fonksiyonel analizde, doğuran çekirdekli Hilbert uzayı noktasal değerlemenin bir sürekli doğrusal fonksiyonel olduğu bir fonksiyonlar Hilbert uzayıdır. Burada, fonksiyonlar Hilbert uzayından kasıt, bahsi geçen uzayın öğelerinin fonksiyonlar olduğudur. Yani söz konusu uzay bir fonksiyon uzayıdır; bununla birlikte aynı zamanda Hilbert uzayı özelliği de taşımaktadır. Benzer bir şekilde, bu tür uzaylar doğuran çekirdekler tarafından da tanımlanabilirler. Bu terimi ilk defa ve aynı zamanda Nachman Aronszajn (1907–1980) ve Stefan Bergman (1895–1977) adlı matematikçiler 1950'de ortaya atıp geliştirmişlerdir.

Matematiğin bir alt dalı olan karmaşık analizde, Bergman uzayı kompleks koordinat uzayının bir D bölgesinde tanımlı holomorf fonksiyonlardan oluşan bir fonksiyon uzayıdır. Uzay, Stefan Bergman'ın adını taşımaktadır. Daha matematiksel bir ifadeyle, Bergman uzayı olan , üzerinde tanımlı ve p-normu sonlu olan holomorf fonksiyonlardan oluşmaktadır.

Matematiğin bir alt dalı olan karmaşık analizde Hurwitz teoremi, matematikçi Adolf Hurwitz'in ispatladığı ve bu yüzden onun ismini almış önemli bir sonuçtur. Genel bir şekilde ifade etmek gerekirse, Hurwitz teoremi karmaşık düzlemdeki bir bölge üzerinde tanımlı bir holomorf fonksiyonlar dizisinin sıfırları ile bu dizinin limiti olan fonksiyonun sıfırlarını ilişkilendirir.

<span class="mw-page-title-main">Schwarz önsavı</span>

Matematiğin bir alt dalı olan karmaşık analizde Schwarz önsavı, karmaşık düzlemdeki birim daire üzerinde tanımlı ve değer kümesi yine aynı birim daire olan holomorf fonksiyonların aldığı değerlerin üzerine kestirimler veren önemli bir sonuçtur. Her ne kadar bilim dizininde önsav olarak isim almışsa da kendi başına önemli bir teoremdir. Bu sonuç, günümüzde herhangi bir karmaşık analiz kitabında ifade edilen şeklinden daha farklı bir şekilde ilk defa Alman matematikçi Hermann Amandus Schwarz tarafından kendi doktora tezinde ifade edilmiştir. Sonucu günışığına çıkarıp günümüzdeki ifadesini yazan ve aynı zamanda bu önsavın tanınmasını sağlayan matematikçi ise Yunan matematikçi Constantin Carathéodory olmuştur.

Matematiğin bir alt dalı olan karmaşık analizde, holomorf bir f fonksiyonunun sıfırı veya kökü f(a) = 0 eşitliğini sayılan karmaşık a sayısına verilen bir addır. Başka bir deyişle, holomorf fonksiyonların sıfır değerini aldığı karmaşık sayılara o fonksiyonun sıfırları adı verilir.

Matematiğin bir alt dalı olan karmaşık analizde Hadamard üç çember teoremi veya sadece üç çember teoremi holomorf fonksiyonların çember üzerindeki maksimum değerleriyle ilgili bir sonuçtur.

<span class="mw-page-title-main">Hilbert uzayı</span>

Matematikte Hilbert uzayı, sonlu boyutlu Öklit uzayında uygulanabilen lineer cebir yöntemlerinin genelleştirilebildiği ve sonsuz boyutlu da olabilen bir vektör uzayıdır. Daha kesin olarak, bir Hilbert uzayı, uzayın tam metrik uzay olmasını sağlayan bir uzaklık fonksiyonu üreten bir iç çarpımla donatılmış bir vektör uzayıdır. Bir Hilbert uzayı, bir Banach uzayının özel bir durumudur. Matematik, fizik ve mühendislikte sıkça kullanılmaktadır. Kuantum mekaniğiyle uyumludur. Adını David Hilbert'ten almaktadır.

Matematikte, Bochner-Martinelli formülü, Cauchy integral formülünün birden fazla kompleks değişkenli fonksiyonlara yönelik genellemelerinden birisidir. Enzo Martinelli ve Salomon Bochner tarafından bağımsız olarak kanıtlanmıştır.

Matematiğin bir alanı olan çok değişkenli kompleks analizde, Bergman çekirdeği, karesi integrallenebilir holomorf fonksiyonlardan oluşan Hilbert uzayının doğuran çekirdeğidir. Stefan Bergman'ın ardından isimlendirilmiştir.

Matematikte, karmaşık koordinat uzayı de ya da bu uzayın altkümeleri üzerinde tanımlı ve karmaşık değer alan fonksiyonların teorisine; yani, birden fazla karmaşık değişkenli fonksiyonların teorisine çok değişkenli karmaşık analiz denir.

<span class="mw-page-title-main">Trigonometrik polinom</span> Matematiksel bir fonksiyon

Sayısal analiz ve matematiksel analiz alt alanlarında, bir trigonometrik polinom, sin(nx) ve cos(nx) fonksiyonlarının sonlu bir doğrusal kombinasyonu olup n bir veya daha fazla doğal sayı değerini alır. Gerçel değerli fonksiyonlar için, katsayılar gerçel sayılar olarak alınabilir. Kompleks katsayılar için, böyle bir fonksiyon ile sonlu bir Fourier serisi arasında bir fark yoktur.